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Abstract

This paper discusses a resampling procedure in estimation of optimal portfolios
when the returns are the class of nonstationary ARCH models with time-varying pa-
rameters. The asymptotic properties of weighted Gaussian quasi maximum likelihood
estimators „̂GQML of time-varying ARCH(p) processes are studied, including asymp-
totic normality. In particular, the extra bias due to nonstationarity of the process is
investigated. We consider bias adjusted estimators „∗GQML by use of resampling. In
this paper we assume that the optimal portfolio g depends on the ARCH parameter
„, i.e., g = g(„). Then the asymptotic distribution of the optimal portfolio esti-
mator g(„∗GQML) is derived. We numerically evaluate the magnitude of g(„̂GQML)
and g(„∗GQML) for actual financial data, which shows eventually the effect of bias
adjustment.

1. Introduction

In the theory of portfolio analysis, optimal portfolios are determined by the mean µ and
variance Σ of the portfolio return. Several authors proposed estimators of the optimal
portfolios as functions of the sample mean µ̂ and the sample variance Σ̂ for independent
returns of assets. However, empirical studies show that financial return processes are often
dependent. From this point of view, Engle (1982) introduced the ARCH model where the
conditional varinace is stochastic and dependent on past observations. The ARCH model
and its related models have gained widespread recognition because they model quite well
the volatility in financial markets over relatively short periods of time. However, these
models hold the stationary assumption. Now given the changing pace of the world’s econ-
omy, modeling financial returns over long intervals using stationary time series may be in-
appropriate. To overcome this issue, Dahlhaus and Rao (2006) introduced a time-varying
ARCH (tvARCH) model which is a class of ARCH models with time-varying parameters.
They studied the parameter estimation for tvARCH(p) models by weighted Gaussian quasi
maximum likelihood methods. Furthermore, they showed asymptotic normality of the es-
timator θ̂GQML. In this paper, denoting the optimal portfolios by a function g = g(θ) of
ARCH parameter θ, we discuss the asymptotic property of optimal portfolio estimators
(i.e. g(θ̂GQML)) when the returns are vector-valued non-Gaussian tvARCH(p) processes
with time dependent mean.

Since the nonstationarity of the process causes the estimator to be biased, we also con-
sider bias adjusted estimators by use of resampling. In general, it is difficult to apply
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resampling to dependent data, because the idea is to simulate sampling from the popula-
tion by sampling from the sample under the i.i.d. assumption. Hall and Yao (2003) and
Shiraishi (2008) suggested a resampling procedure when the process is GARCH model. In
a similar way to the procedure, we show that stationary ARCH processes (which locally
approximate tvARCH processes) can be generated. Then, based on the approximated
ARCH processes, unbiased estimators θ∗GQML for ARCH parameter θ can be constructed,
which implies that we can construct unbiased optimal portfolio estimators g(θ∗GQML).

This paper is organized as follows. Section 2 shows the tvARCH process can be locally
approximated by stationary ARCH processes. Therefore, the tvARCH processes can be
called locally stationary. Then, we study parameter estimation for tvARCH(p) models by
weighted Gaussian quasi maximum likelihood methods. We show that this estimator has
a good property even if Gaussianity assumption is dropped. We elucidate the asymptotics
of the estimator. Furthermore, we generate approximated stationary ARCH processes by
use of resampling. Then, we construct an unbiased estimator for ARCH parameter and
prove asymptotic normality of the estimator. In Section 3, we propose an optimal portfo-
lio depending on the ARCH parameter. Moreover, we examine our approach numerically.
The result shows eventually the effect of bias adjustment.

Throughout this paper, |a| and |A| denote the Euclidean norm of a vector a and a
matrix A defined by

√
a′a and

√
tr(A′A), respectively. We write Xn

d→ X (or
p→ or a.s.→ )

if {Xn} converges in distribution (or in probability or almost surely) to X. The ’vec’
operator transforms a matrix into a vector by stacking columns, and the ’vech’ operator
transforms a symmetric matrix into a vector by stacking elements on and below the main
diagonal.

2. Asymptotic Theory for Fundamental Quantities

We suppose that the return process {Xt,N = (X1,t,N , . . . , Xm,t,N )′; t = 1, . . . , N,N ∈ Z} is
an m-vector ARCH process with time-varying parameter {θt/N = (θ1,t/N , . . . , θq,t/N )′; t =
1, . . . , N}, defined by

Xt,N = µ(θt/N ) + Dt,N (θt/N )εt (2.1)

where µ = (µ1, . . . , µm) is an mean vector function, Dt,N = diag(h
1
2
1,t,N , . . . , h

1
2
m,t,N )

and εt = (ε1,t, . . . , εm,t)′ are i.i.d. random vectors with E(εt) = 0, E(εtε
′
t) = Im and

E(|εt|12+δ) < ∞ for some δ > 0. Here Ht,N = (h1,t,N , . . . , hm,t,N )′ are m vectors defined
by

Ht,N (θt/N ) = U(θt/N ) +
p∑

j=1

Aj(θt/N )~Yt−j,N (θ(t−j)/N ) (2.2)

with ~Yt−j,N = (Y 2
1,t−j,N , . . . , Y 2

m,t−j,N )′, Yi,t−j,N = Xi,t−j,N − µi,U = (U1, . . . , Um)′ and
Aj = (Aab,j)a,b=1,...,m. The order p is assumed known. We also assume that the time-
varying parameter θt/N are unknown and included a compact subset Θ of Rq, i.e. θt/N ∈
Θ ⊂ Rq for ∀t,N ∈ Z. We introduce the notation ∇i = ∂

∂θi
,∇ij = ∂2

∂θi∂θj
,∇ijk =
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∂3

∂θi∂θj∂θk
,∇ = (∇1, . . . ,∇q)′ and ∇2 = (∇ij)i,j=1,...,q for ∀θ ∈ Θ.

We call the sequence of stochastic processes {Xt,N : t = 1, . . . , N} with satisfy (2.1)
and (2.2) a time-varying ARCH process with order p (tvARCH(p) process). As shown
below, the tvARCH(p) process can be locally approximated by stationary ARCH processes.
Therefore, we also call tvARCH processes locally stationary. We make the following
assumptions.

Assumption 1.
There exist 0 < ρ, Q, M < ∞, 0 < ν < 1 and a positive sequence {l(j)}.

(i) For ∀θ ∈ Θ, i = 1, . . . , m and j = 1, . . . , p

ρ < Ui(θ), |µ(θ)| ≤ Q, |U(θ)| ≤ Q and |Aj(θ)| ≤ Q

l(j)

where {l(j)} satisfies mQ
∑∞

j=1
1

l(j) ≤ 1− ν and
∑∞

j=1
j

l(j) < ∞.

(ii) For each u ∈ (0, 1], we assume θu ∈ Int(Θ) and

|µ(θu)− µ(θu′)| ≤ M |u− u′|, |U(θu)−U(θu′)| ≤ M |u− u′|

and

|Aj(θu)−Aj(θu′)| ≤ M

l(j)
|u− u′|,

for u, u′ ∈ (0, 1].

(iii) The third derivatives of µ(θ),U(θ) and Aj(θ) exist with

|∇i1...ik
µa(θ)| ≤ C, |∇i1...ik

Ua(θ)| ≤ C and |∇i1...ik
Aab,j(θ)| ≤ C

for k = 1, 2, 3, i1, . . . , ik = 1, . . . , q, a, b = 1, . . . , m and ∀θ ∈ Θ, where C is a finite
constant independent of i, a, b and θ.

(iv) The third derivatives of θu exist with
∣∣∣∣
∂jθu

∂uj

∣∣∣∣ ≤ C < ∞

for j = 1, 2, 3 and ∀u ∈ (0, 1].

(v) The random vector εt has a positive density on an interval containing zero.

For each given u0 ∈ (0, 1], we assume that there exist a stochastic process {X̃t(u0) =
(X̃1,t(u0), . . . , X̃m,t(u0))′; t ∈ Z}, that is, the stationary ARCH process associated with
the tvARCH(p) process at time point u0 if it satisfies

X̃t(u0) = µ(θu0) + D̃t(u0,θu0)εt (2.3)
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where D̃t(u0) = diag(h̃1,t(u0)
1
2 , . . . , h̃m,t(u0)

1
2 ). Here H̃t(u0) = (h̃1,t(u0), . . . , h̃m,t(u0))′

are m vectors defined by

H̃t(u0, θu0) = U(θu0) +
p∑

j=1

Aj(θu0)
~̃Yt−j(u0, θu0) (2.4)

with ~̃Yt−j(u0) = (Ỹ1,t−j(u0)2, . . . , Ỹm,t−j(u0)2)′, Ỹi,t−j(u0) = X̃i,t−j(u0)− µi.
Comparing (2.1) and (2.2) with (2.3) and (2.4), it seems clear that if t/N is close to

u0. Then, ~Yt,N (θt/N ) and ~̃Yt(u0, θu0) should be close and the degree of the approximation
should depend both on the rescaling factor N and the derivation |t/N−u0|. This is shown
below.

Lemma 1.
Suppose {Xt,N} and {X̃t(u0)} are tvARCH(p) and ARCH processes defined by (2.1),(2.2)
and (2.3),(2.4), respectively. Then, under Assumption 1, we have

~Yt,N (θt/N ) = ~̃Yt(u0, θu0) + Op

(∣∣∣∣
t

N
− u0

∣∣∣∣ +
1
N

)
.

In what follows, we consider a kernel type estimator of the parameter of a tvARCH(p)
model given the sample {Xt,N ; t = 1, . . . , N}. We now define the segment (kernel) esti-
mator of θu0 for u0 ∈ (0, 1). Let t0 ∈ N such that |u0 − t0/N | < 1/N . The estimator is
the minimizer of the weighted conditional likelihood

Lt0,N (θ) :=
N∑

k=p+1

1
bN

W

(
t0 − k

bN

)
lk,N (θ) (2.5)

where

lk,N (θ) =
1
2

{
log det

(
Dk,N (θ)2

)
+ (Xk,N − µ(θ))′Dk,N (θ)−2 (Xk,N − µ(θ))

}

and W : [−1/2, 1/2] → R is a kernel function of bounded variation with
∫ 1/2

−1/2
W (x)dx = 1

and
∫ 1/2

−1/2
xW (x)dx = 0. That is, we consider

θ̂t0/N = arg min
θ∈Θ

Lt0,N (θ). (2.6)

In the derivation of the asymptotic properties of this estimator, we make use of the local
approximation of ~Yt,N by the stationary process ~̃Yt(u0) defined in (2.4). Similarly to the
above, we therefore define the weighted likelihood

L̃N (u0, θ) :=
N∑

k=p+1

1
bN

W

(
t0 − k

bN

)
l̃k(u0, θ) (2.7)

where |u0 − t0/N | < 1/N and

l̃k(u0, θ) =
1
2

{
log det

(
D̃k(u0, θ)2

)
+

(
X̃k(u0)− µ(θ)

)′
D̃k(u0, θ)−2

(
X̃k(u0)− µ(θ)

)}
.
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Similarly to Dahlhaus and Rao (2006), it is shown that both Lt0,N (θ) and L̃N (θ) converge
to

L(u0, θ) := E
(
l̃0(u0, θ)

)

as N → ∞, b → 0, bN → ∞ and |u0 − t0/N | < 1/N . It is easy to show that L(u0,θ) is
minimized by θ = θu0 . For later reference, we introduce the followings:

Σ(u0) := −E
(
∇2 l̃0(u0, θu0)

)
= −{Σij(u0)}i,j=1,...,q

K(u0) :=

(
1
2

∫ 1/2

−1/2

W (x)2dx

)
E

(
∇l̃0(u0, θu0)∇l̃0(u0,θu0)

′
)

=

{(
1
2

∫ 1/2

−1/2

W (x)2dx

)
Kij(u0)

}

i,j=1,...,q

B(u0) :=

(
1
2

∫ 1/2

−1/2

x2W (x)dx

)
Σ(u0)−1

(
∂2

∂u2
∇L(u, θu0)

⌋

u=u0

)

where

Σij(u0) =
m∑

l=1

E

(
∇iµl(θu0)∇jµl(θu0)

h̃l,0(u0, θu0)
+

1
2
∇ih̃l,0(u0,θu0)∇j h̃l,0(u0,θu0)

h̃l,0(u0, θu0)2

)

Kij(u0) =
m∑

l=1

E

(
∇iµl(θu0)∇jµl(θu0)

h̃l,0(u0, θu0)

)

+
1
4

m∑

l1,l2=1

{
E

(
∇ih̃l1,0(u0, θu0)∇j h̃l2,0(u0,θu0)

h̃l1,0(u0, θu0)h̃l2,0(u0, θu0)

)
Cov

(
ε2l1,0, ε

2
l2,0

)

+2E

(
∇ih̃l1,0(u0, θu0)∇jµl2(θu0)

h̃l1,0(u0, θu0)h̃l2,0(u0, θu0)1/2

)
Cov

(
ε2l1,0, εl2,0

)

+2E

(
∇iµl1(θu0)∇j h̃l2,0(u0, θu0)

h̃l1,0(u0, θu0)1/2h̃l2,0(u0, θu0)

)
Cov

(
εl1,0, ε

2
l2,0

)}
.

Then, we have the following result.

Theorem 1.
Suppose {Xt,N : t = 1, . . . , N} is a tvARCH(p) process which satisfies Assumption 1 and
W is a kernel function of bounded variation with

∫ 1/2

−1/2
W (x)dx = 1 and

∫ 1/2

−1/2
xW (x)dx =

0. Then, if |u0 − t0/N | < 1/N and b = O(N−1/5),

√
bN(θ̂t0/N − θu0)

d→ N(BK(u0), Σ(u0)−1K(u0)Σ(u0)−1),

where K is a constant value satisfied with K = bN1/5 and BK(u0) = K5/2B(u0).
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We have shown that the bias can be explained in terms of the derivatives of the tvARCH
process. Furthermore, we have proved asymptotic normality of the estimator. This deriva-
tive enables us to study more precisely the nonstationary behavior of the process. Theorem
1 leads us to take an optimal bandwidth bopt based on minimization the mean squared
error.

Remark 1.
Under the conditions of Theorem 1, the mean squared error RMSE(θ̂t0/N ) = E|θ̂t0/N −
θu0 |2 is minimized by

bopt = N− 1
5
tr

{
Σ(u0)−1K(u0)Σ(u0)−1

}

|B(u0)|2
.

Since magnitude of the bias depend on degree of the nonstationarity, length of the opti-
mal bandwidth is inverse to proportion to the magnitude of the bias. Thus, the optimal
choice of the bandwidth (of the segment length) depends on the degree of stationarity
of the process. Because bopt depends on the asymptotic bias and variance, in the actual
real data analysis, one idea is to start with preliminary estimators µ(θ̂u0), H̃0(u0, θ̂u0)
for µ(θu0), H̃0(u0, θu0), respectively. Then we can calculate their derivatives numerically,
and plug them in Σ(u0),K(u0) and B(u0).

Next, we construct unbiased estimator of θN/N by use of resampling. Let XN =
{X1,N , . . . , XN,N} be observations from described as (2.1) and (2.2). Based on XN , we
can construct {θ̂t/N}t=1,...,N by (2.6). Then, the error εt are recovered by

ε̂t ≡ D−1
t,N (θ̂t/N ){Xt,N − µ(θ̂t/N )} (t = p + 1, · · · , N).

Let GN (·) denote the emprical distribution which put mass 1/(N − p) at ε̂t. Let F ∗N (x) =
GN (σ−2

ε (x− ε̄)) where x ∈ Rm, ε̄ = 1/(N−p)
∑N

t=p+1 ε̂t and σ2
ε = 1/(N−p)

∑N
t=p+1(ε̂t−

ε̄)(ε̂t − ε̄)′. Let {ε∗t } be i.i.d. observations from F ∗N (·). Given {ε∗t }, we generate {X̃∗
t (1)}

by

X̃∗
t (1) = µ(θ̂N/N ) + D̃∗

t (1, θ̂N/N )ε∗t , (2.8)

where D̃∗
t (1, θ̂N/N ) = diag(h̃∗1,t(1, θ̂N/N )1/2, . . . , h̃∗m,t(1, θ̂N/N )1/2). Here H̃∗

t (1, θ̂N/N ) =
(h̃∗1,t(1, θ̂N/N ), . . . , h̃∗m,t(1, θ̂N/N ))′ are defined by

H̃∗
t (1, θ̂N/N ) = U(θ̂N/N ) +

p∑

j=1

Aj(θ̂N/N ) ~̃Y ∗
t−j(1, θ̂N/N )

with ~̃Y ∗
t−j(1, θ̂N/N ) = (Ỹ ∗

1,t−j(1, θ̂N/N )2, . . . , Ỹ ∗
m,t−j(1, θ̂N/N )2)′ and

Ỹ ∗
i,t(1, θ̂N/N ) =

{
X̃∗

i,t(1)− µi(θ̂N/N ) if t > −K
0 if t ≤ −K

.
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From the above procedure, we need to draw ε∗t for−K ≤ t ≤ N . If it is necessary to remove
suspected edge effects, we may treat K as a sufficiently large integer. Throughout this
paper, (∗) implies that we are dealing with the bootstrap quantity, hence distribution P ∗

and expectation E∗ etc. are taken under {ε∗t } ∼ i.i.d. F ∗N given XN = {X1,N , . . . , XN,N}.
By using this model, we introduce a resampled estimator of the parameter θN/N , that

is,

θ∗N/N = arg min
θ∈Θ

L̃∗N (1, θ) (2.9)

where

L̃∗N (1,θ) =
N∑

k=p+1

1
bN

W

(
N − k

bN

)
l̃∗k(1, θ)

and

l̃∗k(1, θ) =
1
2

{
log det

(
D̃∗

k(1, θ)2
)

+
(
X̃∗

k(1)− µ(θ)
)′

D̃∗
k(1, θ)−2

(
X̃∗

k(1)− µ(θ)
)}

.

Then, we have the following result.

Theorem 2.
Suppose {X̃∗

t (1) : t = 1, . . . , N} is generated by (2.8) satisfying Assumption 1. Suppose too
that W is a kernel function of bounded variation with

∫ 1/2

−1/2
W (x)dx = 1,

∫ 1/2

−1/2
xW (x)dx =

0 and b = O(N−1/5). Then,

√
bN(θ∗N/N − θN/N ) d∗→ N(0,Σ(1)−1K(1)Σ(1)−1).

3. Optimal portfolios

In this section, we propose an optimal portfolio estimator when the obserbed return process
is written as (2.1) and (2.2). We construct an optimal portfolio estimator for the stationary
ARCH process associated with the tvARCH(p) process at time point 1(= N/N).

Suppose that (pseudo) return process is described by (2.3) and (2.4) at time point 1.
Then, the mean vector and variance matrix are written by

E(X̃t(1)) = µ(θN/N ) (3.1)

V (X̃t(1)) =
p∏

j=1

(Im −Aj(θN/N ))−1Ũ((θN/N )) ≡ V (θN/N ) (3.2)

where Ũ = diag(U1, . . . , Um). Let ω = (ω1, . . . , ωm)′ be the vector of portfolio weights.
Then, the return of portfolio at time t is X̃t(1)′ω, and the expectation and variance are,
respectively, given by µ(θN/N )′ω, ω′V (θN/N )ω. Optimal portfolio weights have been
proposed by various criteria. They are expressed as a function g(µ, V ) of µ and V . (See
Shiraishi and Taniguchi (2008)).
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Since the mean vector and variance matrix are parametrized by θ, we can express the
optimal portfolio function as g = g(θ). Also, it should be noted that since the vector of
portfolio weight ω = (ω1, . . . , ωm)′ satisfies the restriction e′ω = 1, where e = (1, . . . , 1)′,
we have only to estimate the subvector (ω1, . . . , ωm−1)′. Hence we assume that the function
g is (m− 1)-dimensional, i.e.,

g : θ → Rm−1. (3.3)

For g given by (3.3) we impose the following.

Assumption 2.
The function g(θ) is continuously differentiable.

Then we have the following result.

Theorem 3.
Suppose {X̃∗

t (1) : t = 1, . . . , N} is generated by (2.8) satisfying Assumption 1. Suppose too
that W is a kernel function of bounded variation with

∫ 1/2

−1/2
W (x)dx = 1,

∫ 1/2

−1/2
xW (x)dx =

0 and b = O(N−1/5). Then, under Assumption 2, we have

√
bN(g(θ∗N/N )− g(θN/N )) d∗→ N(0,∇g(θN/N )Σ(1)−1K(1)Σ(1)−1∇g(θN/N )′).

In what follows, we examine our approach numerically. Here, we discuss a global asset
allocation problem where Japanese capital must be allocated to ”U.S. dollar”, ”Australian
dollar” and ”Euro”, respectively. Based on the daily log-returns for these exchange rates,
we construct the mean-variance optimal portfolios. The data are from Jan 1st, 2007 to
Jun 1st, 2007.

Suppose now the return process {Xt,N = (X1,t,N , X2,t,N , X3,t,N )′; t = 1, . . . , N, N =
2, . . . , 100} is the following tvARCH(1) process ;

Xt,N = θ
(1)
t/N + Dt,N (θt/N )εt

where Dt,N = diag(h1/2
1,t,N , h

1/2
2,t,N , h

1/2
3,t,N ), and Ht,N = (h1,t,N , h2,t,N , h3,t,N )′ is defined by

Ht,N (θt/N ) = θ
(2)
t/N + θ

(3)
t/N

~Yt−1,N (θ(1)
t/N ),

with θt/N = (θ(1)′

t/N , θ
(2)′

t/N , vec(θ(3)
t/N )′)′, θ

(1)
t/N = (θ(1)

1,t/N , θ
(1)
2,t/N , θ

(1)
3,t/N )′, θ

(2)
t/N = (θ(2)

1,t/N , θ
(2)
2,t/N ,

θ
(2)
3,t/N )′, θ

(3)
t/N = (θ(3)

ij,t/N )i,j=1,2,3 and ~Yt,N = ((X1,t,N − θ
(1)
1,t/N )2, (X2,t,N − θ

(1)
2,t/N )2,

(X3,t,N − θ
(1)
3,t/N )2)′.

By using (2.6) and (2.9), we construct Gaussian quasi maximum likelihood estima-
tor θN/N (GQMLE), and resampled Gaussian quasi maximum likelihood estimator θ∗N/N

(rGQMLE), respectively. Then, two types of optimal portfolio estimator g(θN/N ) and
g(θ∗N/N ) are constructed from (3.1) and (3.2). Here, we set down target returns (µP ) from
0.0001 to 0.0010. Then, optimal portfolio g(µP , θ) is written as

g(µP , θ) =
1

σµµ · σee − (σµe)2
{(σee · µP − σµe)µ(θ)− (σµe − σµµ)e}
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where σµµ = µ(θ)′V (θ)−1µ(θ), σµe = µ(θ)′V (θ)−1e, σee = e′V (θ)−1e and e = (1, 1, 1)′.
Figure 1 shows the portfolio returns (= α′NXN+1,N+1) for

• GQMLE (i.e. αN = g(0.0005,θN/N )),

• rGQMLE (i.e. αN = g(0.0005,θ∗N/N )) and

• SM&SV (i.e. αN = g(0.0005, sample mean, sample variance)),

and N = 2, . . . , 100.

Figure 1 is about here.

It is easy to see that the variations for GQLME and rGQMLE are smaller than those for
SM&SV. This symptom leads us our optimal portfolio estimators are low-risk in view of the
variation. In Table 1, we can see sample means of the portfolio returns for N = 2, . . . , 100
and µP = 0.0001, . . . , 0.0010.

Table 1 is about here.

Obviously, the sample means for GQLME and rGQMLE are larger than those for SM&SV.
Compare GQMLE with rGQMLE, those for rGQMLE are quite close to the target returns
rather than those for GQMLE, which shows eventually the effect of bias adjustment.
Finally, we show sample mean squares errors of the portfolio returns for N = 2, . . . , 100
and µP = 0.0001, . . . , 0.0010 in Table 2.

Table 2 is about here.

For almost all target returns, the MSEs for GQLME and rGQMLE are smaller than those
for SM&SV. Although those for rGQMLE are relatively larger than those for GQMLE,
the spreads are not so wide.

Summarizing the numerical study, our proposed optimal portfolio estimators are obviously
attractive rather than traditional one. Furthermore, we obtained the large effect of bias
adjustment by use of resampling.
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Figure 1: Time series plots of portfolio return for SM&SV portfolio, GQMLE portfolio
and rGQMLE portfolio

Table 1: Sample Mean of portfolio return for SM&SV portfolio, GQMLE portfolio and
rGQMLE portfolio

Target Return SM&SV GQMLE rGQMLE
0.0001 -0.0000493 0.0000442 0.0003009
0.0002 -0.0000704 0.0000394 0.0002921
0.0003 -0.0001079 0.0000347 0.0002833
0.0004 -0.0001253 0.0000299 0.0002745
0.0005 -0.0001685 0.0000252 0.0002657
0.0006 -0.0002217 0.0000204 0.0002569
0.0007 -0.0002234 0.0000156 0.0002481
0.0008 -0.0002554 0.0000109 0.0002393
0.0009 -0.0003253 0.0000061 0.0002305
0.0010 -0.0003003 0.0000014 0.0002216
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Table 2: Mean Squares Error of portfolio return for SM&SV portfolio, GQMLE portfolio
and rGQMLE portfolio

Target Return SM&SV GQMLE rGQMLE
0.0001 0.0000057 0.0000057 0.0000064
0.0002 0.0000092 0.0000053 0.0000054
0.0003 0.0000141 0.0000049 0.0000051
0.0004 0.0000206 0.0000046 0.0000056
0.0005 0.0000285 0.0000045 0.0000068
0.0006 0.0000379 0.0000043 0.0000088
0.0007 0.0000488 0.0000043 0.0000114
0.0008 0.0000611 0.0000044 0.0000148
0.0009 0.0000751 0.0000045 0.0000189
0.0010 0.0000903 0.0000048 0.0000238
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