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1 Introduction

In linear regression models, estimation of a subset of parameters is considered
when the complementary subset is plausibly redundant. Saleh and Sen [7] con-
sidered preliminary test estimator in a non parametric error distribution set-up
and obtained restricted, unrestricted and preliminary test estimators using rank
estimators which are robust in this situation. Later on, Sen [11], Saleh and Sen
[7] and Sen and Saleh [8] treated preliminary test and shrinkage estimation for
least squares estimators, maximum likelihood estimators and M-estimators in a
linear model with nonparametric independent and identical error distribution.
Moreover, Mukherjee [6] discussed shrinkage estimations in linear models with
long-memory errors.
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These discussions on shrinkage estimations can be extended to linear time
series models. Saleh [9] dealt with a shrinkage estimation for the parameters of
autoregressive Gaussian process setting Whittle likelihood ratio as the prelimi-
nary test. The asymptotic theory is based on that of Dzhaparidze [2]

In this paper, we consider a general non-Gaussian linear process which in-
cludes the usual ARMA processes, and address the problem of estimation for
subset of spectral parameters when the complementary subset is suspected to
be redundant. A preliminary test quasi-maximum likelihood estimator (q-MLE)
and restricted and unrestricted q-MLE’s are introduced. When the complemen-
tary parameter is contiguous to zero vector, the mean square errors of these
estimators are evaluated. Then we observe that the preliminary test estimator
is relatively effective among the three ones.

The paper is organized as follows. Section 2 describes a class of vector-valued
non-Gaussian linear stationary processes. Section 3 elucidates the asymptotic
behaviors of quasi-maximum likelihood estimators and preliminary test quasi-
maximum likelihood estimator. Section 4 addresses the problem of comparative
performance of the estimators with respect to mean square error under local
alternatives, especially when the model is ARMA(1,1). Numerical studies illu-
minate that the preliminary estimator is relatively effective under a sequence of
local alternatives. In Section 5, we mention its applications to financial hedging
problem based of preliminary test for efficient market hypothesis.

2 Settings and Problems

Consider the m-vector linear process

X(t) =
∞∑

j=0

Aθ(j)U(t − j), t ∈ Z (2.1)

where the U(t) are i.i.d. m-vector random variables with probability density
p(u) > 0 on Rm, and Aθ(j) = {Aθ,ab(j); a, b = 1, · · · ,m}, j ∈ Z, are m × m
matrices depending on a parameter vector θ = (θ1, · · · , θq) ∈ Θ ⊂ Rq. Here the
coefficients {Aθ(j)} and innovation density p(·) of U(t) are required to satisfy
the following assumption.

(A1) (i) There exists 0 < ρA < 1 so that

∥ Aθ(j) ∥= O(ρj
A), j ∈ N, (2.2)

where ∥ Aθ(j) ∥ denotes the sum of absolute values of the entries of
Aθ(j).

(ii) Every Aθ(j) = {Aθ,ab(j)} is continuously two times differentiable
with respect to θ, and the derivatives satisfy

|∂i1 · · · ∂ik
Aθ,ab(j)| = O(γj

A), k = 1, 2, j ∈ N (2.3)

for some 0 < γA < 1 and for a, b = 1, · · · ,m.

2



(iii) Every ∂i1 · · · ∂ik
Aθ,ab(j) satisfies the Lipschitz condition for all i1, i2 =

1, · · · q and j ∈ N.

(iv) det
{∑∞

j=0 Aθ(j)zj
}
̸= 0 for |z| ≤ 1 and

{∑∞
j=0 Aθ(j)zj

}−1

has the
power series expansion

∞∑
j=0

Aθ(j)zj


−1

= Bθ(0) + Bθ(1)z + Bθ(2)z2 + · · · , |z| ≤ 1,

where ∥ Bθ(j) ∥= O(ρj
B), j ∈ N, for some 0 < ρB < 1.

(v) Every Bθ(j) = {Bθ,ab} is continuously two times differentiable with
respect to θ, and the derivatives satisfy

|∂i1 · · · ∂ik
Bθ,ab(j)| = O(γj

B), k = 1, 2, j ∈ N (2.4)

for some 0 < γB < 1 and for a, b = 1, · · · ,m.

(vi) Each ∂i1 · · · ∂ik
Bθ,ab(j) satisfies the Lipschitz condition for all i1, i2 =

1, · · · q and j ∈ N.

(A2) (i)

lim
∥u∥→∞

p(u) = 0,

∫
up(u)du = 0,∫

uu′p(u)du = Im and
∫

∥u∥4p(u)du < ∞,

where Im is the m × m identity matrix.

(ii) The derivatives Dp and D2p ≡ D(Dp) exist on Rn, and every com-
ponent of D2p satisfies the Lipschitz condition.

(iii) ∫
∥ ϕ(u) ∥4 p(u)du < ∞ and

∫
D2p(u) = 0,

where ϕ(u) = p(u)−1Dp(u).

Then, {X(t)} is a stationary process with spectral density matrix

fθ(λ) =
1
2π


∞∑

j=0

Aθ(j)eijλ




∞∑
j=0

Aθ(j)eijλ


∗

. (2.5)

The class of {X(t)} includes that of non-Gaussian vector-valued causal ARMA
models, so the class is sufficiently rich.

Let X(1), · · · ,X(n) be n observations from the process {X(t)}. Partition θ
as follows:

θ = (θ1, θ2) = (θ11, · · · , θ1q1 , θ21, · · · , θ2q2), qi ≥ 1, i = 1, 2, q1 + q2 = q. (2.6)
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We are now interested in the estimation of θ1 in the case when θ2 is close to 0.
If θ2 = 0, then we have the restricted model

X(t) =
∞∑

j=0

A(θ1,0)(j)U(t − j), t ∈ Z. (2.7)

3 Preliminary Test Estimator

From (A1) the model (2.1) is representable as

∞∑
j=0

Bθ(j)X(t − j) = U(t). (3.1)

From (2.1) and (3.1) the likelihood function of {U(s), s ≤ 0, X(1), · · · ,X(n)}
is given by

dQn,θ =
n∏

t=1

p


t−1∑
j=0

Bθ(j)X(t − j) +
∞∑

r=0

Cθ(r, t)U(−r)

 dQu (3.2)

where Qu is the probability distribution of {U(s), s ≤ 0}, and

Cθ(r, t) =
r∑

r′=0

Bθ(r′ + t)Aθ(r − r′).

Since U(s), s ≤ 0, are unobservable we use the quasi-likelihood

Ln(θ) =
n∏

t=1

p


t−1∑
j=0

Bθ(j)X(t − j)

 (3.3)

for estimation of θ = (θ1, θ2). Hence, the quasi-maximum likelihood estimator
(QML) θn of θ is a solution of the equation

∂

∂θ

 n∑
t=1

log p


t−1∑
j=0

Bθ(j)X(t − j)


 = 0 (3.4)

with respect to θ. Let

F(p) =
∫

ϕ(u)ϕ(u)′p(u)du (Fisher information),

and
R(j) = E[XtXt+j ], j ∈ Z.

Then there exists a statistic θ̃n that solves (3.4) such that

√
n

(
θ̃1n − θ1

θ̃2n − θ2

)
= Γ−1

(
∆1n

∆2n

)
+ op(1) (3.5)

4



where (
∆1n

∆2n

)
d−→ N (0, Γ) (3.6)

and

Γ =

(
tr

[
F(p)

∞∑
i1=1

∞∑
i2=1

∂

∂θj
Bθ(i1)R(i1 − i2)

∂

∂θk
Bθ(i2)

])
j,k=1,··· ,q

. (3.7)

is dependent on the spectral density matrix fθ(λ)(e.g. Taniguchi and Kakizawa
[16]). We call θ̃n the unrestricted QML of θ If F(p) = γIm (γ:a positive con-
stant), then Γ is rewritten as

Γ =
1
4π

(
tr

[
F(p)

∫ π

−π

fθ(λ)
∂

∂θj
{fθ}−1fθ(λ)

∂

∂θk
{fθ}−1dλ

])
j,k=1,··· ,q

. (3.8)

Write the decomposition of Γ as

Γ =
(

Γ11 Γ12

Γ21 Γ22

)
(3.9)

where Γij is qi × qj matrix for i, j = 1, 2. Using this decomposition and

Γ−1 =
(

Γ−1
11 + Γ−1

11 Γ12Γ−1
22·1Γ21Γ−1

11 −Γ−1
11 Γ12Γ−1

22·1
−Γ−1

22·1Γ21Γ−1
11 Γ−1

22·1

)
, (3.10)

(3.5) can be rewritten as

√
n

(
θ̃1 − θ1

θ̃2 − θ2

)
=

(
Γ−1

11

0

)
∆1n+

(
Γ−1

11 Γ12Γ−1
22·1

Γ−1
22·1

) (
∆2n − Γ21Γ−1

11 ∆1n

)
+op(1)

(3.11)
where

Γ22·1 = Γ22 − Γ21Γ−1
11 Γ12. (3.12)

In the same way as the above, we get θ̂1n that solves (3.4) with respect to
(θ1,0), and show that

√
n

(
θ̂1n − θ1

)
= Γ−1

11 ∆1n + op(1). (3.13)

We call θ̂1n the restricted QML of θ1.
To introduce a compromised estimator of θ1 under θ2 ≈ 0 we define a test

statistic Ln to test the null-hypothesis H0 : θ2 = 0 by

Ln = 2 log
Ln(θ̃1n, θ̃2n)

Ln(θ̂1n,0)
. (3.14)

From Taylor’s formula (see Fuller [3] or Taniguchi and Amano [15]),

log
Ln(θ̃1n, θ̃2n)
Ln(θ1n,0)

=
1
2

(
∆1n

∆2n

)′

Γ−1

(
∆1n

∆2n

)
+ op(1) (3.15)
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and

log
Ln(θ̂1n,0)
Ln(θ1n,0)

=
1
2
∆′

1nΓ−1
11 ∆1n + op(1) (3.16)

under H0. Hence, from (3.5) and (3.6) it is seen that

Ln = (∆2n − Γ21Γ−1
11 ∆1n)′Γ−1

22·1(∆2n − Γ21Γ−1
11 ∆1n)+op(1) d−→ χ2

q2
(3.17)

under H0 where χ2
q2

is a chi-square distribution with q2 degrees of freedom (d.f.).
Thus, we choose the α-level critical value χ2

q2,α and define the preliminary test
quasi-maximum likelihood estimator θ̂PT

1n by

θ̂PT
1n = θ̃1n − (θ̃1n − θ̂1n) I

(
Ln ≤ χ2

q2,α

)
(3.18)

where I(·) is the indicator function.

4 Asymptotic property of the estimators

Since we are interested in estimation θ1 in the case when θ2 ≈ 0, we consider
the asymptotic behavior of θ̃1n, θ̂1n and θ̂PT

1n under local alternatives

An : θ2 = h/
√

n, h ∈ Rq2 fixed. (4.1)

First, we obtain,

Lemma 4.1. Under An, √
n (θ̂1n − θ1)√
n (θ̃1n − θ1)

∆21 − Γ21Γ−1
11 ∆1n

 d−→

N

 Γ−1
11 Γ12h

0
Γ22·1h

 ,

 Γ−1
11 Γ−1

11 0
Γ−1

11 Γ−1
11·2 −Γ−1

11 Γ12

0 −Γ21Γ−1
11 Γ22·1

 . (4.2)

Proof. From LAN theorem (see Hallin, et al.[4] or Taniguchi and Kakizawa [16]),
the log-likelihood ratio between H0 and An given by

Λn ≡ log
Ln(θ1,h/

√
n)

Ln(θ1,0)

has the stochastic expansion

Λn =h′∆2n − 1
2
h′Γ22h + op(1). (4.3)

It follows from (3.11), (3.13), and (4.3) that
√

n (θ̂1n − θ1)√
n (θ̃1n − θ1)

∆21 − Γ21Γ−1
11 ∆1n

Λn

 d−→ N (µ,Σ) (4.4)
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under H0 where

µ =


0
0
0

1
2h

′Γ22h

 , Σ =


Γ−1

11 Γ−1
11 0 Γ−1

11 Γ12h
Γ−1

11 Γ−1
11·2 −Γ−1

11 Γ12 0
0 −Γ21Γ−1

11 Γ22·1 Γ22·1h
h′Γ21Γ−1

11 0 h′Γ22·1 h′Γ22h

 .

(4.5)
Hence, by LeCam’s third lemma we obtain (4.2).

Lemma 1 leads to the following conclusions under An:

(i)
√

n (θ̂1n − θ) and Ln are asymptotically independent.

(ii)
Ln

d−→ χ2
q2

(∆) (4.6)

where ∆ = h′Γ22·1h, and χ2
q2

(∆) is a noncentral chi-squared distribution
with q2 d.f. and noncentrality parameter ∆.

(iii)
√

n (θ̃1n − θ1) given ∆2n − Γ21Γ−1
11 ∆1n = Γ22·1(z + h)

d−→ N
(
−Γ−1

11 Γ12z, Γ−1
11

)
. (4.7)

From the above it is shown that

lim
n→∞

P
{√

n (θ̂1n − θ1) ≤ x, Ln < χ2
q2,α|An

}
= Φq1(x − Γ−1

11 Γ12h : 0, Γ−1
11 )Hq2(χ

2
q2,α : ∆) (4.8)

and

lim
n→∞

P
{√

n (θ̃1n − θ1) ≤ x, Ln ≥ χ2
p2,α|An

}
=

∫
(z+h)′Γ22·1(z+h)≥χ2

q2,α

Φq1(x + Γ−1
11 Γ12z : 0, Γ−1

11 ) dΦq2(z : 0, Γ−1
22·1)

(4.9)

where Φm(x : µ,Σ) is the m-dimensional normal cumulative distribution func-
tion (CDF) with mean µ and variance Σ, and Hm(x : ∆) is the CDF of a
noncentral chi-squared distribution with m d.f. and noncentrality parameter ∆.
Thus, we get, as the asymptotic CDF of

√
n (θ̂PT

1n − θ1)

G(x) = Φq1(x − Γ−1
11 Γ12h : 0, Γ−1

11 )Hq2(χ
2
q2,α : ∆)

+
∫

(z+h)′Γ22·1(z+h)≥χ2
q2,α

Φq1(x + Γ−1
11 Γ12z : 0,Γ−1

11 ) dΦq2(z : 0,Γ−1
22·1).

(4.10)

In what follows, denote, by B(θn) and M(θn), the bias and mean square
error (MSE) of θn under An, respectively.
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Proposition 4.1. We have

(i) B(θ̃1n) = 0 and M(θ̃1n) = Γ−1
11 + Γ−1

11 Γ12Γ−1
22·1Γ21Γ−1

11 . (4.11)

(ii) B(θ̂1n) = −Γ−1
11 Γ12h and M(θ̂1n) = Γ−1

11 + Γ−1
11 Γ12hh′Γ21Γ−1

11 . (4.12)

(iii) B(θ̂PT
1n ) = −Γ−1

11 Γ12hHq2+2(χ2
q2,α : ∆) and (4.13)

M(θ̂PT
1n ) = Γ−1

11 + Γ−1
11 Γ12Γ−1

22·1Γ21Γ−1
11

{
1 − Hq2+2(χ2

q2,α : ∆)
}

+ Γ−1
11 Γ12hh′Γ21Γ−1

11

{
2Hq2+2(χ2

q2,α : ∆) − Hq2+4(χ2
q2,α : ∆)

}
.

(4.14)

Proof. (4.2) implies (4.12) and (4.11). Moreover, (4.13) and (4.14) follow from
the results of [Chap. 7 in Saleh [10]].

We now evaluate the errors for a special case. Set

fα(∆) = 1 − H3(χ2
1,α : ∆) +

{
2H3(χ2

1,α : ∆) − H5(χ2
1,α : ∆)

}
∆, (4.15)

then (4.12) and (4.14) are rewritten as

M(θ̂1n) = Γ−1
11 + Γ−1

11 Γ12Γ−1
22·1Γ21Γ−1

11 ∆ (4.16)

and
M(θ̂PT

1n ) = Γ−1
11 + Γ−1

11 Γ12Γ−1
22·1Γ21Γ−1

11 fα(∆). (4.17)

For the comparison between their behaviors, it is important to describe the
magnitude of M(θ̃1n), M(θ̂1n) and M(θ̂PT

1n ) in terms of that of 1, ∆ and fα(∆).
Here note that fα(∆) → 1 as ∆ → ∞.

Proposition 4.2. We obtain

M(θ̂1n) ≤ M(θ̂PT
1n ) ≤ M(θ̃1n) if 0 ≤ ∆ ≤ ∆̃, (i)

M(θ̂1n) ≤ M(θ̃1n) ≤ M(θ̂PT
1n ) if ∆̃ ≤ ∆ ≤ 1, (ii)

M(θ̃1n) ≤ M(θ̂1n) ≤ M(θ̂PT
1n ) if 1 ≤ ∆ ≤ ∆̂, (iii)

M(θ̃1n) ≤ M(θ̂PT
1n ) ≤ M(θ̂1n) if ∆̂ ≤ ∆ (iv)

where ∆ = h2Γ22·1, and ∆̃ and ∆̂ are defined by values of functions of α (or
χ2

1,α) satisfying 1 = fα(∆̃) and ∆̂ = fα(∆̂), respectively.

Let us examine numerical features of the results. For α = 0.1, 0.05, 0.01
the corresponding (∆̃, ∆̂) are (0.6409735, 1.5044336), (0.6991444, 1.7876485)
and (0.8228669, 2.5083560), respectively. Figure 1 plots fα for α=0.1, 0.05 and
0.01.

Let {X(t)} be an ARMA(1,1) process, i.e,

X(t) + bX(t − 1) = U(t) + aU(t − 1) (4.18)
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where a, b ∈ (−1, 1), a ̸= b and U(t) are i.i.d. random variables. Further, we
assume that the distribution of U(t) is a generalized error distribution (GED)
with innovation density

p(u) =
η exp

(
− 1

2 |u/λ|η
)

λ2(1+1/η)Γ(1/η)
, 0 < η ≤ ∞ (4.19)

where

λ =
1

21/η

√
Γ(1/η)
Γ(3/η)

. (4.20)

If η = 2, {X(t)} is a Gaussian process. Table 1 shows the values of F(p) and
kurtosis for η =0.75 (0.25) 2.5. From this, we can see that U(t) have heavy
tails when η < 2, and the minimum of Fisher information F(p) is achieved at
η = 2. Figure 2 plots fα for α = 0.05 and η=1, 1.5 and 2 under Γ22·1/F(p)=1.
From Fig.2, it clear that θ̂PT

1n is comparatively effective when the distribution
has heavy tail. Moreover from MSE ∝ F(p)−1 MSE with η ̸= 2 as a whole,
especially η < 2 is smaller than that with η = 2.

table 1.
(Skewness and Fisher Information of U(t))

η 0.75 1 1.25 1.5 1.75 2 2.25 2.5
kurtosis 9.6500 6 4.5272 3.7620 3.3026 3 2.7875 2.6312
F(p) 5.7312 2 1.3938 1.0957 1.0181 1 1.0122 1.0421

Let θ = (θ1, θ2) = (a, b − b′) for given b′ ∈ (−1, 1) (Since a and b′ are
symmetric in Γ, we consider the case of (θ1, θ2) = (b, a−a′) for given a′ ∈ (−1, 1)
similarly). Since the spectral density of {X(t)} is

fθ(λ) =
1
2π

|1 − aeiλ|2

|1 − beiλ|2
, (4.21)

it follows that

Γ = F(p)
( 1

1−a2 − 1
1−ab′

− 1
1−ab′

1
1−b′2

)
(4.22)

(See Taniguchi [13] or Taniguchi [14]) and

Γ22·1 = F(p)
(a − b′)2

(1 − b′2)(1 − ab′)2
(4.23)

Since we assume the stationarity, it is supposed that a is not close to b′. In
Figures 3 and 4 we provide the MSEs for α = 0.05, η = 2, h = 2 and b′=0.2.
The figures confirm (i) and (iv) in proposition 4.2 numerically. From Fig.3 we
observe that PTMLE is better than Unrestricted MLE if a ≈ b′. While from
Fig.4 we mention that PTMLE is better than Restricted MLE otherwise.

It is clear from the numerical studies that θ̂PT
1n is comparatively effective as

a whole in comparison with θ̃1n and θ̂1n. Thus, we conclude that PTMLE is
useful to estimate θ1 when θ2 ≈ 0.
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5 Optimal Portfolio and Market Efficiency

As an application of the results in the previous sections we consider the opti-
mization problem of the portfolio choice of m assets:

stock S = {S(t)} = {(S1(t), · · · , Sm(t))′}.

Let the return process of {S(t)} be X(t) defined by (2.1), i.e.,

Sj(t) − Sj(t − 1) = Sj(t − 1)Xj(t), t ∈ Z, j = 1, · · · ,m.

For the optimization problem of their portfolio choice(e.g. Kariya [5] and
Shiraishi and Taniguchi [12]), it is important that we estimate the spectral
density matrix fθ(λ) of {X(t)} accurately.

For example, we consider the mean variance optimal hedging of {S1(t)} by
{S2(t), · · · , Sm(t)}, i.e., the problem of choosing the constant µ and (m−1)×1
vectors {ξ(t)} which minimize

E


X1(t) − µ −

∞∑
j=−∞

ξ(j)(X2(t − j), · · · , Xm(t − j))′


2
 . (5.1)

Then, using the decomposition of spectral density matrix

fθ(λ) =
(

f11,θ(λ) f1m,θ(λ)
fm1,θ(λ) fmm,θ(λ)

)
, (5.2)

the µ and ξ(j) that minimize (5.1) are given by µ = 0 and

ξ(j) =
1
2π

∫ 2π

0

eijλf1m,θ(λ)fmm,θ(λ)−1dλ, (5.3)

and the minimum of (5.1) is∫ 2π

0

{
f11,θ(λ) − f1m,θ(λ)fmm,θ(λ)−1fm1,θ(λ)

}
dλ (5.4)

(See Chapter 8 in Brillinger [1]).
Evidently, if we need a good estimator for ξ(j), we need the one for θ Since

market efficiency and stock returns are generally supposed to be uncorrelated.
Thus, if we choose a partition of θ for preliminary test such that Aθ(0) is inde-
pendent of θ2, and Aθ(j) = 0 (or Bθ(j) = 0) for j = 1, 2, · · · when θ2 = 0, then
we can apply the results in Section 4 to this problem. Here, the test statistic
Ln means a test of (weak-form) efficient market hypothesis (EMH).
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Figure 1.
fα for α=0.1, 0.05 and 0.01.
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Figure 2.
fα for α=0.05 and η=1, 1.5 and 2.
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Figure 3.
MSEs for α=0.05, η=2, h = 2 and b′=0.2
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Figure 4.
MSEs for α=0.05, η=2, h = 2 and b′=0.2
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