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Abstract

This paper discusses estimation procedure for the spectral density of intrinsic time pro-

cesses because there has been no argument of the spectral analysis for subordinated processes.

Such processes have been proposed in a variety of contexts to describe asset price behavior.

They are used when the movement of prices is tied to the number of market transactions,

trading volume or the more illusive concept of information arrival. We develop the asymp-

totic theory for an estimated spectral density of intrinsic time processes and elucidate the

asymptotics, which show some interesting structures. Also, numerical studies are given to

confirm the results.
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1 Introduction

While most of time series are recorded at regularly spaced intervals, there
are many cases where observations are irregularly spaced. For example, until
a few years ago most empirical studies involved daily, weekly, or monthly time
series. As high frequency data becomes more easily available it is possible to
study how financial markets evolve in real time. But unlike daily, weekly or
monthly series, quote or tick-based data are by their very nature irregularly
spaced. If time series data on factory output covers a period with a strike, the
serial correlation in the series might best be captured using a time scale based
on the days during which the plant was operating, rather than simply units of
calender time. In such cases, we will focus on situations where a subordinated
process framework is adopted.
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The idea originated in the work by Mandelbrot and Taylor (1967), Clark
(1973) among others, one may think of asset price movements as the realization
of a process Yt = Y ∗

Zt
where {Zt} is a directing process and {Y ∗

z } is an intrinsic
time process. This positive nondecreasing stochastic process {Zt} can, for in-
stance, be thought as related to the arrival of information. In practice, one uses
nondecreasing processes like either the number of transactions or the cumulated
trading volume, or the cumulated volatility as directing processes. Furthermore,
Ghysels, Gouriéroux and Jasiak (1998) describe the comprehensive treatment
of the stochastic process theory and statistical estimation of subordinated pro-
cesses. But there has been no argument of the spectral analysis for subordinated
processes.

In this paper, we develop estimation and asymptotic theory of the spectral
density function f∗(λ) for intrinsic time processes. Because {Y ∗

z } is not observ-
able, we have to estimate f∗(λ) from observations of calender time process {Yt}.
For this we use a relation between spectral densities for calender time process
and intrinsic time process, and introduce a local Whittle likelihood. Based on it
we propose an estimator of the spectral density of {Y ∗

z }, and provide the asymp-
totic theory. Numerical studies are given, and show some interesting features of
the asymptotics of our estimator.

This paper is organized as follows. Section2 presents a brief review of subor-
dinated processes and their properies. Further, we mention a relation of spectral
structure between calender time process and intrinsic time process. In Section3,
we introduce a local Whittle likelihood from the observations of {Yt}, and pro-
pose an estimator of the spectral density of {Y ∗

z }. The asymptotics are elu-
cidated in terms of the spectral structure and a characteristic function of the
directing process. Numerical studies are given, and they illuminate an intersting
feature of our estimator. The proofs of theorems are given in Section5.

Throughout this paper we use the following notations. N is the set of all
positive integers, Z is the set of all integers and R is the set of all real numbers.
Moreover [x] is the integer part of a real number x and ‖ a ‖ is the Euclidean
norm of a vector a.

2 Subordinated Processes

In this section we describe the properties of the process of interest, when it
evolves in calender time and in intrinsic(or operational) time. We first introduce
three fundamental processes and some notations:
(1) directing process
The time changing process, called the directing process by Clark (1973), asso-
ciates the operational scale with the calender time. It is a real-valued process
defined by

Z : t ∈ R −→ Zt ∈ R .

(2) intrinsic time process
The process of interest evolving in the operational time is denoted by

2



Y ∗ : z ∈ R −→ Y ∗
z ∈ R .

(3) calender time process
Finally we may deduce the process in calender time t ∈ R by considering

Yt = Y ∗ ◦ Zt = Y ∗
Zt

.

The introduction of a time scaling process is interesting when the probabilistic
properties of the process of interest become simpler.

As example of the above setting, the price series Yt for cotton futures evolves
at different rates during identical intervals of time. The number of individual
effects added to together to give the price chance during a day is variable. In this
case the directing process Zt would be the cumulative trading volume up to time
t. It explains the assumptions below which ensure that all the links between the
two processes (Yt), (Zt) in calender time come from the time deformation.

Assumption 1. The two processes Z = {Zt : t ∈ R} and Y ∗ = {Y ∗
z : z ∈ R} are

mutually indepedent.

As usual for time series analysis we study the second order properties of the
processes Y and Y ∗. Assuming that both processes are second order integrable,
we denote the first order moment by

{
m(t) ≡ E(Yt), t ∈ R
m∗(z) ≡ E(Y ∗

z ), z ∈ R (2.1)

and the autocovariance functions{
γ(t, h) ≡ E [(Yt −EYt) (Yt+h − EYt+h)] , t ∈ R, h ∈ R
γ∗(z0, z) ≡ E

[[
Y ∗

z0
− E(Y ∗

z0
)
] [

Y ∗
z+z0

− E(Y ∗
z+z0

)
]]

, z0 ∈ R, z ∈ R .

(2.2)
From the definition of the time deformed process,

m(t) = E(Yt) = E
[
E

(
Y ∗

Zt
| Zt

)]

γ(t, h) = E (YtYt+h)− (EYt) (EYt+h) = E [E (YtYt+h | Zt, Zt+h)]− (EYt) (EYt+h) .

We next make some fundamental assumptions on Y ∗ and Z.

Assumption 2. Y ∗ is second order stationary, i.e., m∗(z) = m∗, for all z ∈ R,
and γ∗(z0, z) = γ∗(z), for all z0, z ∈ R.

Assumption 3. The directing process has strongly stationary increments, i.e.,
for h, t ∈ R, the distribution of ∆hZt = Zt+h − Zt is independent of t.

From Assumptions 2 and 3, we have second order stationarity of the pro-
cesses Y , i.e.,

m(t) = m∗, γ(t, h) = E[γ∗(∆hZt)] ≡ γ(h), (say). (2.3)
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We suppose that Y and Y ∗ have spectral densities f(λ) and f∗(λ), respectively.
Then we have the following relationship:

γ(z) =
∫ ∞

−∞
eizλf(λ)dλ , γ∗(z) =

∫ ∞

−∞
eizλf∗(λ)dλ . (2.4)

If Assumptions 1-3 hold, it is seen that

γ(h) = E{γ∗(Zt, Zt+h − Zt)} = E{γ∗(Zt+h − Zt)}
=

∫ ∞

−∞
E{ei∆hZtλ}f∗(λ)dλ , (2.5)

hence, ∫ ∞

−∞
eihλf(λ)dλ =

∫ ∞

−∞
E{ei∆hZtλ}f∗(λ)dλ . (2.6)

In what follows we impose the following.

Assumption 4.
E{ei(∆hZt)λ} = exp(ihλ)ϕ(λ). (2.7)

where ϕ(λ) is a function which is independent of h.
Then, we can have the relation between f(λ) and f∗(λ):

f(λ) = ϕ(λ)f∗(λ). (2.8)

We provide a few examples of the distributions of ∆hZt satisfying (2.7)

Example 1. If ∆hZt ∼ N(h, σ2), then

E{ei(∆hZt)λ} = exp(ihλ) exp
(
−σ2

2
λ2

)
.

Therefore,

ϕ(λ) = exp
(
−σ2

2
λ2

)
. (2.9)

Example 2. If (∆hZt) ∼ Exp(h, θ), then

E{ei(∆hZt)λ} = exp(ihλ)
(

1− iλ

θ

)−1

.

Therefore,

ϕ(λ) =
(

1− iλ

θ

)−1

. (2.10)

Example 3. If (∆hZt) is distributed as a stable distribution Sα(σ, β, h) charac-
terized by the characteristic function

E{ei(∆hZt)λ} =
{

exp(ihλ) exp{−σα|λ|α(1− iβsign(λ) tan πα
2 )} if α 6= 1

exp(ihλ) exp{−σ|λ|(1 + iβ 2
π sign(λ) log λ)} if α = 1 .
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Then,

ϕ(λ) =
{

exp{−σα|λ|α(1− iβsign(λ) tan πα
2 )} if α 6= 1

exp{−σ|λ|(1 + iβ 2
π sign(λ) log λ)} if α = 1 .

(2.11)

The probability density function of Sα(σ, β, h) does not admit explicit expression
except for the following special cases:
(i) α = 2, β = 0, the normal distribution,
(ii) α = 1, β = 0, the Cauchy distribution,
(iii) α = 0.5, β = 1, the Levy distribution.
It can be skewed to the left or right, depending on the sign of β, and is symmetric
when β = 0. If α < 2, it has fatter tails than the normal distribution and the pth
absolute moment does not exist for any p > α, and in particular the variance is
infinite. If 1 < α < 2, the probability density function has no closed form, and
it has to be calculated numerically by Fourier inverse transformation of (2.11).
When α > 1, the mean exists and equals h. Unless β = 0, the mean is different
from the median.

3 The Estimation Procedure

In this section we estimate f∗(λ) from a partial realization Y1, . . . , Yn, under
assumption that ϕ(λ) is known. For all l ∈ Z, we can rewrite γ(l) as

γ(l) =
∫ π

−π

exp(ilλ)f̃(λ)dλ , (3.1)

where f̃(λ) is the spectral density of the discrete time process Yn, n ∈ Z, which
is representable as f̃(λ) =

∑∞
j=−∞ f(λ + 2πj) (see Hannan (1970), p.45). Cor-

respondingly it follows from (2.8) that

f̃(λ) =
∞∑

j=−∞
ϕ(λ + 2πj)f∗(λ + 2πj), (3.2)

Similarly, if we set f̃∗(λ) =
∑∞

j=−∞ f∗(λ + 2πj), then it holds that

γ∗(l) =
∫ π

−π

exp(ilλ)f̃∗(λ)dλ . (3.3)

We can understand that f̃∗(λ) is the spectral density of the discrete time process
Y ∗

n , n ∈ Z. For a sufficiently large fixed M ∈ N , we partition the interval
[0, π] into M subintervals. For an arbitrarily chosen λ0 ∈ [0, π], let I0

M =
[λ0 − 2π

n L, λ0 + 2π
n L] where L = [ n

4M ]. We may suppose that if f∗ is smooth,

f∗(λ + 2πj) ≈ f∗(λ0 + 2πj) ≡ θj(say), for λ ∈ I0
M . (3.4)

In view of Example 1-3, in many cases, we may assume

Assumption 5.
ϕ(λ0 + 2πj) → 0(j →∞) . (3.5)
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Let f̃M,θM (λ0) =
∑M

j=−M ϕ(λ0 + 2πj)θj = ϕM (λ0)′θM , where ϕM (λ0) =
(ϕ(λ0 − 2πM), · · · , ϕ(λ0), · · · , ϕ(λ0 + 2πM))′, θM = (θ−M , · · · , θ0, · · · , θM )′.
For the observed stretch Y1, · · · , Yn, the periodgram is given by

IY
n (λ) =

1
2πn

|
n∑

t=1

Yte
itλ|2 .

A local Whittle likelihood around λ0 is introduced by

D(λ0, f̃M,θM
, IY

n ) =
2π

L

L∑

k=−L

[
log f̃M,θM

(λ0 +
2πk

n
) +

IY
n (λ0 + 2πk

n )

f̃M,θM (λ0 + 2πk
n )

]
.

(3.6)
Then the Whittle estimator of θM is given by

θ̂M = (θ̂−M , · · · , θ̂0, · · · , θ̂M )′ ≡ arg min
θM

D(λ0, f̃M,θM
, IY

n ) . (3.7)

Hence we can propose estimators of f̃(λ0) and f̃∗(λ0) by

ˆ̃
fM,θM (λ0) = ϕM (λ0)′θ̂M , (3.8)

ˆ̃
f∗M,θM

(λ0) =
M∑

j=−M

θ̂j (3.9)

respectively. To develop the asymptotic estimation theory for θ̂M and ˆ̃
f∗M,θM

(λ0),
we introduce the following assumption.

Assumption 6.
(a) for any continuous functions gj(λ)

∫ π

−π

gj(λ)IY
n (λ)dλ

p→
∫ π

−π

gj(λ)f̃(λ)dλ , j = 1, · · · , q (3.10)

(b) the quantities
√

n

∫ π

−π

{IY
n (λ)dλ− f̃(λ)}gj(λ)dλ (3.11)

have, asymptotically, a normal distribution with zero mean vector and covari-
ance matrix V whose (j, l) element is

Vjl =
{

4π

∫ π

−π

[
f(λ)2gj(λ)gl(λ)

]
dλ

+ 2π

∫ ∫ π

−π

[gj(λ1) · gl(λ2)] Q̃Y (−λ1, λ2,−λ2)dλ1dλ2

}
(3.12)
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where Q̃Y (w1, w2, w3) = 1
(2π)3

∑∞
t1,t2,t3=−∞ exp{−i(w1t1+w2t2+w3t3)}QY (t1, t2, t3),

with QY (t1, t2, t3) = cum{Y0, Yt1 , Yt2 , Yt3}.

Remark 1. This assumption is very natural and not restrictive. Hosoya and
Taniguchi (1982) established (a) and (b) for the case when {Yt} is a very general
class of non-Gaussian linear processes.

We now derive the asymptotic distribution of θ̂M . Let

θM = arg min
θM

D(λ0, f̃M,θM
, f̃) .

Then we have,

Theorem 1. If M is a sufficiently large fixed integer and if

Mf = 4M

∫ λ0+
π

2M

λ0− π
2M

[
∂2

∂θM∂θ′M
f̃M,θM

(λ)−1f̃(λ) +
∂2

∂θM∂θ′M
log f̃M,θM

(λ)
]

dλ

(3.13)
is a nonsingular matrix, then

√
n(θ̂M − θM ) d→ N(0,M−1

f Ṽ M−1
f ) (3.14)

where Ṽ = {Ṽjl} is a matrix such that

Ṽjl = 16M2

[
4π

∫ λ0+
π

2M

λ0− π
2M

{
f̃(λ)

2 ∂

∂θj
{f̃M,θM (λ)}−1 ∂

∂θl
{f̃M,θM (λ)}−1

}

θ=θM

dλ

+2π

∫ ∫ λ0+
π

2M

λ0− π
2M

{
∂

∂θj
{f̃M,θM

(λ1)}−1 ∂

∂θl
{f̃M,θM

(λ2)}−1

}

θ=θM

Q̃Y (−λ1, λ2,−λ2)dλ1dλ2

]
.

(3.15)

To get a consistent estimator of f̃∗(λ0), we have to assume that M → ∞ but
M = o(n). Then we obtain,

Theorem 2.
Suppose that M = M(n) → ∞ and limn→∞

M√
n

= 0 as n → ∞. Then, the

following statement holds true.
√

L( ˆ̃
f∗M,θM

(λ0)− f̃∗(λ0))
d→ N(0,Wλ0)

where Wλ0 =

∑∞
i=−∞

∑∞
j=−∞ ϕ(λ0 + 2πi)ϕ(λ0 + 2πj)

[∑∞
j=−∞ ϕ(λ0 + 2πj)2

]2 × f̃(λ0)2.

Theorem 1 implies that for sufficiently large fixed M, the local Whittle es-
timator θ̂M has the asymptotic normality and

√
n-consistency and the asymp-
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totics depend on non-Gaussian quantities Q̃Y (·, ·, ·). However, in Theorem 2,

if we let M → ∞ with M = o(
√

n), then the asymptotics of ˆ̃
f∗M,θM

(λ0) are
described by ϕ(·) and f̃(·), and are independent of non-Gaussianity(i.e., non-
Gaussian robust).

So far we have assumed that ϕ(λ) is known. But, this assumption is not
natural, hence, we suppose that ϕ(λ) = ϕγ(λ), γ ∈ Rq, where γ is unknown
parameter, i.e., ϕγ(·) is a parametric model. From (2.7) we have the relation:

ϕγ(λ) = exp{−iλ} · E{ei(∆1Zt)λ}. (3.16)

Suppose that an observed stretch Z1, Z2, · · · , Zn+1 is available, and let Wj ≡
∆1Zj , j = 1, · · · , n. As in Knight and Yu (2002), we can introduce the following
empirical characteristic function

ϕ̂n(λ) ≡ exp{−iλ} 1
n

n∑

j=1

exp{iWjλ}, (3.17)

for (3.16). Knight and Yu (2002) introduced an estimator of γ by

γ̂ ≡ arg min
γ

∫ π

−π

|ϕ̂n(λ)− ϕγ(λ)|2dG(λ), (3.18)

where G(λ) is an appropriate weight function, and showed the consistency and
asymptotic normality of γ̂ under natural regularity conditions. Therefore, in
the case when ϕ(λ) is unknown, we may use ϕγ̂(λ) in place of ϕ(λ).

4 Numerical Studies

In this section we compare f̃(λ) with ˆ̃
fM,θM (λ) by simulation. We suppose

that {Yt} is generated by the AR(1) model

Yt = αYt−1 + εt

where εt ∼ i.i.d.N(0, 1) and the directing process {∆hZt} ∼ i.i.d.N(h, 1). For
simplicity, in what follows we write λ = λ0. Then, the spectral density of this
model is

f̃(λ) =
1

|1− αeiλ|2 ×
1
2π

.

We set the length of observed stretch Yt is n = 100 and M = n
1
3 . Figures 1 and

2 plot the estimator ˆ̃
fM,θM (λ) and the true spectral density for α = 0.55, 0.75

respectively, where λ = j−1
50 , j = 1, · · · , 51. Table 1 shows the MSE by 5,000

times simulation of ˆ̃
fM,θM (λ) for α = 0.55, 0.75 and λ = π

5 , 2π
5 , 3π

5 , 4π
5 . The

comparison shows when the frequency λ is low the estimator ˆ̃
fM,θM (λ) is not so

good. But as the frequency λ becomes higher, the spectral estimator ˆ̃
fM,θM (λ)

becomes a good one. From the figures and table it seems interesting that good-
ness of the estimator ˆ̃

fM,θM
(λ) is frequency-dependent i.e., the estimator be-

comes a good one for high-frequencies.
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Figure 1: The spectral estimator ˆ̃
fM,θM

(λ) and the true spectral density f̃(λ)
of {Yt}(a = 0.55).
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Figure 2: The spectral estimator ˆ̃
fM,θM

(λ) and the true spectral density f̃(λ)
of {Yt} (a = 0.75).
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λ 1
5π 2

5π 3
5π 4

5π

α = 0.55 0.01399827 0.002447916 0.001011906 0.00050327
α = 0.75 0.04739601 0.002263211 0.000690388 0.000306882

Table 1: MSE of the spectral estimator ˆ̃
fM,θM

(λ) (λ = 1
5π, 2

5π, 3
5π, 4

5π)
(α = 0.55, 0.75).
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