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SUMMARY

Box and Pierce (1970) proposed a test statisticTBP which is the squared sum ofm
sample autocorrelations of the estimated residual process of autoregressive-moving av-
erage model of order (p,q).TBP is called the classical portmanteau test. Under the null
hypothesis that the autoregressive-moving average model of order (p,q) is adequate, they
suggested that the distribution ofTBP is approximated by chi-square distribution with
(m-p-q) degrees of freedom, ”ifm is moderately large”. This paper shows thatTBP is un-
derstood as a special form of Whittle likelihood ratio testTPW for autoregressive-moving
average spectral density withm-dependent residual process. Then, it is shown that, for
any finitem, TPW does not converge to chi-square distribution with (m-p-q) degrees of
freedom in distribution, and that, if we assume Bloomfield’s exponential spectral density
TPW is asymptotically chi-square distributed for any finitem. From this observation we
propose a modifiedT†PW which is asymptotically chi-square distributed. In view of likeli-
hood ratio, we also mention the asymptotics of a natural Whittle likelihood ratio testTWLR

which is always asymptotically chi-square distributed. Its local power is also evaluated.
Numerical studies illuminate interesting features ofTPW, T†PW, andTWLR. Because many
versions of the portmanteau test have been proposed, and been used in variety of fields,
our systematic approach for portmanteau tests and proposal of tests will give another view
and useful applications.

Some Key words: ARMA model; Exponential spectral model; LAN; local power;
Portmanteau test; Time series model checking; Whittle likelihood.

1. Introduction

In time series model building, it is usual to verify the adequacy of a fitted model by
computing residual autocorrelations. For this Box and Pierce (1970) proposed a test
statistic

TBP = n
m∑

k=1

r̂2
k, (1·1)

1



where ˆrk is the sample autocorrelation of lagk of the estimated residual process. Here
n is the sample size, andTBP is called the portmanteau test statistic. Under the null
hypothesis that the ARMA(p,q) model is adequate, Box and Pierce (1970) suggested that
the distribution ofTBP is approximated byχ2

m−p−q, ”if m andn are moderately large”.
However, Davies et al. (1977) claimed that theχ2

m−p−q -approximation is not adequate,
i.e., showed that, even for moderately largen andm = 20, the true significance levels
are likely to be much lower than predicted by asymptotic theory. Ljung and Box (1978)
proposed an improved version ofTBP:

TLB = n(n + 2)
m∑

k=1

(n− k)−1r̂k
2, (1·2)

which is called the Ljung-Box test statistic. However, Ansley and Newbold (1979) re-
ported that the asymptotic significance levels byTLB yield a serious understatement. Peña
and Rodŕıguez (2002) proposed a new portmanteau test for time series which is more
powerful than Ljung and Box test. For diagnostic checking in ARMA models with non-
independent innovations, Francq, Roy and Zakoïan (2005) showed that portmanteau tests
can perform poorly in this framework. Various modified versions of portmanteau test can
be found in e.g., Lobato et al (2001), Hipel and McLeod (2005), Li (2004), Arranz (2005)
and Katayama (2007, 2008).

In many application fields, portmanteau tests, especially,TBP and TLB, have been
widely used. It is very important to develop the systematic asymptotic theory which
grasps the portmanteau tests. This paper elucidates that the portmanteau tests are essen-
tially equivalent to a special form of Whittle likelihood ratioTPW for the spectral density
f(θ1,θ2)(λ) of (2·3) in Section 2, which tests whether the residual correlation parameter
θ2 satisfiesH : θ2 = 0 or A : θ2 , 0. Then, it is shown that, underH, for any finite
m = dim θ2, TPW 9 χ2

m−p−q in distribution asn → ∞. This result is caused by the
fact thatTPW uses the Whittle estimatorθ̂1 for the modelf(θ1,0)(λ) and thatθ̂2(θ̂1) for the
estimated modelf(θ̂1,θ2)(λ). As an auxiliary result we show that, if the time series structure
has Bloomfield’s exponential spectral model, then, for any finitem, TPW → χ2

m−dim θ1
,

in distribution underH. Also we propose a modifiedT†PW which is asymptotically chi-
square distributed.

In view of likelihood ratio we mention the asymptotics of a natural Whittle likeli-
hood ratio testTWLR which is based on̂θ1 and (̃θ1, θ̃2) which is the Whittle estimator
for the modelf(θ1,θ2)(λ). Then it is shown (i)TWLR → χ2

m in distribution underH, and
(ii) TWLR→ a noncentralχ2-distribution in distribution under a sequence of contiguous
alternativesAn : θ2 = h/

√
n. Numerical studies forTPW, T†PW andTWLR are provided.

They illuminate an interesting feature of them. Since the portmanteau tests are important
benchmark statistics, our systematic studies for them give another view.

2. Interpretation of portmanteau test as a special Whittle likelihood ratio

In this section we show that portmanteau tests proposed by Box and Pierce (1970), Ljung
and Box (1978), etc., are some special forms of Whittle likelihood ratio test for spectra
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of concerned stationary processes.
Suppose that{Xt} is generated by

p∑

j=0

α jXt− j =

q∑

j=0

β jut− j , (α0 = β0 = 1, αp , 0, βq , 0), (2·1)

where{ut} is a sequence of independent and identically distributed (0, σ2
u) random vari-

ables with fourth-order cumulantκ4. Hereα(z) ≡ ∑p
j=0α jzj andβ(z) ≡ ∑q

j=0 β jzj are
assumed to satisfyα(z) , 0 andβ(z) , 0 on D = {z ∈ C : |z| ≤ 1} and the equations
α(z) = 0 andβ(z) = 0 have no common roots. Then{Xt} is stationary with spectral
density

fθ1(λ) =
|∑q

j=0 β jei jλ|2
|∑p

j=0α jei jλ|2
σ2

u

2π
(2·2)

= gθ1(λ) · σ
2
u

2π
, (say),

whereθ1 = (θ1,1, · · · , θ1,p+q)′ ≡ (α1, · · · , αp, β1, · · · , βq)′. Letting θ = (θ′1, θ
′
2)′, where

θ2 = (θ2,1, · · · , θ2,m)′, we introduce the following spectral density

fθ(λ) ≡ f(θ1,θ2)(λ) =
|∑q

j=0 β jei jλ|2
|∑p

j=0α jei jλ|2 ·
σ2

u

2π


m∑

j=−m

θ2, je
−i jλ



= gθ1(λ) · σ
2
u

2π


m∑

j=−m

θ2, je
−i jλ

 , (2·3)

whereθ2,0 ≡ 1, θ2,− j ≡ θ2, j . It is seen thatf(θ1,θ2)(λ) is the spectral density of{Xt} in (2·1)
if {ut} is anm-dependent sequence with autocovariance{θ2, j}, and thatfθ1(λ) in (2·2) is
the spectral density when{ut} is independent and identically distributed withEut = 0 and
Eu2

t = σ2
u.

Consider the problem of testing

H : θ2 = 0 against A: θ2 , 0, (2·4)

which will lead to the problem of portmanteau test. This is rewritten asH : ut = εt against
A : ut =

∑m
j=−mθ2, jεt− j where{εt} is a sequence of i.i.d.(0, σ2).

Let ~Xn = (X1, · · · ,Xn)′ be an observed stretch from (2·1), and write the periodogram
as

In(λ) =
1

2πn

∣∣∣∣∣∣∣
n∑

t=1

Xte
itλ

∣∣∣∣∣∣∣

2

, λ ∈ [−π, π]. (2·5)

Although we do not assume Gaussianity of{Xt}, if {Xt} were Gaussian, the log-likelihood
based on~Xn would be approximated by

− n
4π

∫ π

−π
{log fθ(λ) +

In(λ)
fθ(λ)

}dλ, (2·6)
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(e.g., Dzhaparidze (1986, p.52), Taniguchi and Kakizawa (2000, section 3.1). Hence we
construct a test statistic by use of

D( fθ, In) = − 1
4π

∫ π

−π
{log fθ(λ) +

In(λ)
fθ(λ)

}dλ. (2·7)

For this we define estimatorŝθ1 andθ̂2 of θ1 andθ2, respectively, as follows:

θ̂1 ≡ arg max
θ1

D( f(θ1,0), In), (2·8)

θ̂2(θ̂1) ≡ arg max
θ2

D( f(θ̂1,θ2), In), (2·9)

where 0 in (2·8) is them-dimensional zero vector. Here it should be noted thatθ̂2(θ̂1) is
a function ofθ̂1. For the testing problem (2·4), we introduce a sort of Whittle likelihood
ratio test

TPW = 2n[D( f(θ̂1,θ̂2(θ̂1)), In) − D( f(θ̂1,0), In)] (2·10)

We callTPW a portmanteau test of Whittle type.
Then we have the following theorem.
Theorem 1.UnderH : θ2 = 0 in (2·3), the following statements hold true.

(i) TPW − TBP
P→ 0 andTPW − TLB

P→ 0 asn→ ∞.

(ii) For any fixedm = dimθ2, the asymptotic distribution ofTPW does not converge to
χ2

m−p−q asn→ ∞.

We place all the proofs of theorems in Section 5.

Remark 1. In the literature of portmanteau tests, it is claimed that the distribution of
portmanteau tests converges toχ2

m−p−q asn → ∞ if m is ”sufficient large”. Katayama
(2008) discussed convergence ofTBP andTLB to χ2

m−p−q if m → ∞. But it should be
noted that, ”ifm is finite, it does not converge toχ2

m−p−q” even if n → ∞. In fact,
for AR(1) model with coefficientα1, Ljung (1986) showed thatTBP ∼ χ2

m−1 + α2m
1 χ2

1,
asymptotically, which affirms these statements. There are many works which say that the
χ2

m−p−q approximations for portmanteau tests are not adequate (e.g., Davies et al. (1977)).
In view of our theorem, the results seem natural.

Portmanteau tests have been used for ARMA models.
Let {Xt} be generated by

Xt =

∞∑

j=0

a j(θ1)ut− j , (2·11)

whereθ1 = (θ1,1, · · · , θ1,r )′ and {ut} is a sequence of random variables withEut = 0,
Eu2

t = σ2
u and fourth-order cumulantκ4. We assume thata j(θ1)’s are continuously twice

differentiable with respect toθ1, and satisfy
∞∑

j=0

a j(θ1)2 < ∞. (2·12)

4



If {ut} is uncorrelated, then{Xt} has the spectral density

fθ1(λ) =

∣∣∣∣∣∣∣∣

∞∑

j=0

a j(θ1)ei jλ

∣∣∣∣∣∣∣∣

2

· σ
2
u

2π
(2·13)

= gθ1(λ) · σ
2
u

2π
, (say).

The spectral densitygθ1(λ) is very general, hence, it includes the ARMA(p,q) of (2·2)
as a special case. Lettingθ = (θ′1, θ

′
2)′, whereθ2 = (θ2,1, · · · , θ2,m)′, we introduce the

following spectral density

fθ(λ) ≡ f(θ1,θ2)(λ) = gθ1(λ) · σ
2
u

2π


m∑

j=−m

θ2, je
−i jλ

 , (2·14)

whereθ2,0 ≡ 1.
Consider the problem of testing

HG : θ2 = 0 against AG : θ2 , 0, (2·15)

which is the generalized form of portmanteau testing problem.
Write

F ≡ 1
4π

∫ π

−π

∂

∂θ
log fθ(λ)

∂

∂θ′
log fθ(λ)dλ =

(
F11 F12

F21 F22

)
.

In what follows we assume thatF is nonsingular. For our general spectral model (2·14),
we have,

Theorem 2.Assumem = dimθ2 > r = dimθ1. Then, underHG : θ2 = 0 in (2·14),
the asymptotic distribution ofTPW for (2·14) converges toχ2

m−r asn → ∞ if the matrix
F21F−1

11 F12 is idempotent with rank{F21F−1
11 F12} = r.

Corollary 2. If gθ1(λ) in (2·14) is of the form

gθ1(λ) =
σ2

2π
exp


r∑

j=0

θ1, j cos jλ

 , θ1,0 = 1, (2·16)

which is called the exponential spectral density (Bloomfield (1973)), then, underHG :
θ2 = 0,

TPW
d−→ χ2

m−r as n→ ∞. (2·17)

From Theorems 1 and 2, we observe that the asymptotics of portmanteau type test
TPW depend on the time series structure of{Xt} strongly.

In the case of ARMA(p,q) model (2·1), Katayama (2008) proposed a modified statis-
tic T†PW of TPW such thatT†PW is asymptoticallyχ2

m−p−q distributed underH in (2·4).
For the general spectral model (2·14), such a modification is possible. Since submatri-

cesFi j of the Fisher information matrix depend on the unknown parameterθ = (θ′1, θ
′
2)′,
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i.e, Fi j = Fi j (θ), we estimateFi j by F̃i j ≡ Fi j (θ̃) where θ̃ ≡ (θ̂′1, θ̂2(θ̂1)′)′. Define
W̃ ≡ F̃21(F̃12F̃21)−1F̃12, and let

T†PW ≡ TPW − nθ̂2(θ̂1)′W̃θ̂2(θ̂1). (2·18)

Then we have,
Theorem 3.For (2·14), assumem> r. Then, underHG : θ2 = 0, it holds that

T†PW

d−→ χ2
m−r (n→ ∞). (2·19)

Here, we do not assume thatF21F−1
11 F12 is idempotent as in Theorem 2.

3. Power Properties forT†PW and Natural Whittle Likelihood Ratio

This section discusses the local power properties ofT†PW and a natural Whittle likelihood
ratio testTWLR. In the case of ARMA, Katayama (2007) derived the local power of some
portmanteau tests by a Taylor expansion around the hypothesisH. In what follows, for
general spectra including ARMA, we derive the local power ofT†PW andTWLR by use
of the LAN theory and LeCam’s third lemma. Although we can use the local asymp-
totic normality (LAN) result for general non-Gaussian linear processes (Theorem 2.2.1
of Taniguchi and Kakizawa (2000)), to avoid unnecessarily complicated notations and
discussion, in what follows, we restrict ourselves to the case when the process (2·11) is
Gaussian.

Assumption.

(i) The spectral densityfθ(λ), θ = (θ1, θ2), is continuously twice differentiable with
respect toθ.

(ii) There exist positive constantsc1 andc2 such that

c1 ≤ fθ(λ) ≤ c2 on [−π, π] . (3·1)

(iii) The Fisher information matrixF is positive definite.

Recall our testing problem:

HG : θ2 = 0 against AG : θ2 , 0. (3·2)

We evaluate the local power ofT†PW under a local alternative

A(n)
G : θ2 =

1√
n

h, (3·3)

whereh is a fixedm-dimensional vector.
Theorem 4.Suppose that Assumption holds. Then, underA(n)

G ,

T†PW

d−→ χ2
m−r

{
h′Ch

}
as n→ ∞, (3·4)
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whereC = lm×m− F21(F12F21)−1F12, andχ2
m−r {h′Ch} is a noncentralχ2 random variable

with (m− r) degrees of freedom and noncentralityh′Ch.
For the testing problem (3·2), we are led to think of a natural Whittle likelihood ratio

test.
Define

(θ̃1, θ̃2) ≡ arg max
(θ1,θ2)

D( f(θ1,θ2), In). (3·5)

Here we should note that the estimator (θ̂1, θ̂2(θ̂1)) defined by (2·8) and (2·9) is essentially
different from (̃θ1, θ̃2). Based on the estimator (θ̃1, θ̃2) we can construct the following
Whittle likelihood ratio test

TWLR≡ 2n[D( f(θ̃1,θ̃2), In) − D( f(θ̂1,0), In)] (3·6)

for the testing problemHG againstAG.
Write D( fθ, In) in (2·7) as l(θ1, θ2). For the problem of testingH: θ2 = 0 v.s. A:

θ2 , 0, Newbold (1980) and Li (2004, p.14) used the Lagrange multiplier test

LM = n

{
∂

∂θ
l(θ̂1,0)

}′ [
E

{
− ∂2

∂θ∂θ′
l(θ̂1, 0)

}]−1 {
∂

∂θ
l(θ̂1,0)

}
. (3·7)

Newbold (1980) showed that LM test of ARMA(p,q) against ARMA(p+k,q) is asymptot-
ically equivalent to a standardized quadratic form ofk residual autocorrelations.

For general spectral densities (2·13) and (2·14) which include ARMA spectra, we
have the following unified results.

Theorem 5.Suppose that Assumption holds, andm = dimθ2. Then, for any fixedm,
the following statements hold true.

(i) UnderHG,

TWLR
d−→ χ2

m, as n→ ∞. (3·8)

(ii) UnderHG, TWLR is asymptotically equivalent to the LM test (3·7).

(iii) UnderA(n)
G ,

TWLR
d−→ χ2

m(h′F22·1h) as n→ ∞, (3·9)

whereF22·1 = F22 − F21F−1
11 F12, andχ2

m(h′F22·1h) is a noncentralχ2 random vari-
able withmdegrees of freedom and noncentrality parameterh′F22·1h.

In the next section we will provide numerical results forTPW, T†PW andTWLR.
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4. Numerical studies forTWLR and T†PW

In this section, we give numerical studies of our test statisticTWLR andT†PW. In Example

4.1, we compare the finite-sample significance levels ofTWLR, T†PW with another famous
portmanteau testTLB under MA(1) process. In Example 4.2, under AR(1) process the
finite-sample significance levels ofTWLR, T†PW andTLB are examined. Then it can be seen

that TWLR andT†PW are more accurate thanTLB. In Example 4.3, we analyse the local

powers ofTWLR andT†PW under local alternative and we can observe some interesting
power properties. In Examples 4.1 and 4.2, the simulations are besed on 5000 realizations
andn = 200.

Example 4.1.Let {Xt} be the MA(1) process

Xt = ut + βut−1 (4·1)

whereut’s are independent and identically distributed asN(0, 1). In Table 1, we report the
5% empirical significance levels ofTWLR for m = 1, T†PW for m = 2 andTLB for m = 20.
The parameter values are chosen as 0.1 ≤ β ≤ 0.9.

Table 1 is about here.

From Table 1, we can see that the empirical significance levels ofTWLR, T†PW are closer
to the assigned value than those ofTLB.

Example 4.2.Let {Xt} be the AR(1) process

Xt + αXt−1 = ut (4·2)

whereut’s are independent and identically distributed asN(0,1). In Table 2, the 5%
empirical significance levels ofTWLR for m = 1, T†PW for m = 2 andTLB for m = 20 are
reported. The parameter values are chosen as 0.1 ≤ α ≤ 0.9.

Table 2 is about here.

From Table 2, we can see thatTWLR, T†PW are better thanTLB.
Example 4.3.Let {Xt} be the ARMA(1,1) process

Xt + α1Xt−1 = ut + β1ut−1 (4·3)

where{ut} is an m-dependent sequence with mean 0, variance 1 and its autocovariance
functions areθ2 = 2√

n
(1,1, · · · ,1). The parameter values are taken asα1 = 0.2,0.4, 0.6,0.8

and β1 = 0.1,0.3, 0.5,0.7,0.9. From Theorem 5,TWLR converges toχ2
m(h′F22·1h) as

n→ ∞. In Tables 3 and 4, the theoretical local powers for an 5% level test ofTWLR are
reported form = 5, 10 respectively.

Tables 3 and 4 are about here.

From Tables 3 and 4 we can see that the theoretical local power ofTWLR increases as the
parameter valuesα1 andβ1 become large.

From Theorem 4,T†PW converges toχ2
m−r {h′Ch} asn → ∞. In Tables 5 and 6, we

report the theoretical local powers ofT†PW for an 5% level test form = 5,10 respectively.
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Tables 5 and 6 are about here.

From Tables 5 and 6 it may be noted that local power ofT†PW increases as the parameter
valuesα1 andβ1 become large.
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β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TWLR 0.036 0.043 0.043 0.059 0.077 0.074 0.068 0.057 0.052
T†PW 0.048 0.047 0.048 0.048 0.05 0.05 0.049 0.052 0.05
TLB 0.072 0.073 0.067 0.076 0.077 0.074 0.083 0.123 0.276

Table 1: Empirical significance levels ofTWLR, T†PW andTLB in Example 4.1.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TWLR 0.050 0.059 0.066 0.059 0.056 0.055 0.055 0.045 0.041
T†PW 0.054 0.053 0.049 0.048 0.052 0.044 0.048 0.042 0.042
TLB 0.051 0.059 0.061 0.061 0.051 0.058 0.054 0.063 0.06

Table 2: Empirical significance levels ofTWLR, T†PW andTLB in Example 4.2.

α \ β 0.1 0.3 0.5 0.7 0.9

0.2 0.840881 0.873037 0.895161 0.909700 0.915722
0.4 0.869604 0.897393 0.915605 0.926447 0.930437
0.6 0.890136 0.913794 0.928195 0.935884 0.938534
0.8 0.902261 0.922552 0.934162 0.940085 0.942624

Table 3: Theoretical local powers ofTWLR in the case ofm = 5 in Example 4.3.

α \ β 0.1 0.3 0.5 0.7 0.9

0.2 0.993079 0.994594 0.995493 0.996032 0.996341
0.4 0.994389 0.995629 0.996357 0.996784 0.997041
0.6 0.995192 0.996255 0.996869 0.997223 0.997470
0.8 0.995648 0.996605 0.997155 0.997489 0.997799

Table 4: Theoretical local powers ofTWLR in the case ofm = 10 in Example 4.3.

α \ β 0.1 0.3 0.5 0.7 0.9

0.2 0.897868 0.921801 0.937450 0.947201 0.951454
0.4 0.919283 0.939051 0.951313 0.958331 0.961202
0.6 0.933815 0.950049 0.959469 0.964473 0.966424
0.8 0.942070 0.955821 0.963442 0.967320 0.968795

Table 5: Theoretical local powers ofT†PW in the case ofm = 5 in Example 4.3.

α \ β 0.1 0.3 0.5 0.7 0.9

0.2 0.995731 0.996724 0.997303 0.997645 0.997798
0.4 0.996591 0.997390 0.997852 0.998118 0.998233
0.6 0.997110 0.997787 0.998172 0.998387 0.998477
0.8 0.997395 0.998000 0.998338 0.998521 0.998596

Table 6: Theoretical local powers ofT†PW in the case ofm = 10 in Example 4.3.
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