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SUMMARY

Box and Pierce (1970) proposed a test statiSgig which is the squared sum af
sample autocorrelations of the estimated residual process of autoregressive-moving av-
erage model of order (p,q)[gp is called the classical portmanteau test. Under the null
hypothesis that the autoregressive-moving average model of order (p,q) is adequate, they
suggested that the distribution ®gp is approximated by chi-square distribution with
(m-p-q) degrees of freedom, "ifhis moderately large”. This paper shows thap is un-
derstood as a special form of Whittle likelihood ratio t€s{y for autoregressive-moving
average spectral density with-dependent residual process. Then, it is shown that, for
any finitem, Tpw does not converge to chi-square distribution with (m-p-q) degrees of
freedom in distribution, and that, if we assume Bloomfield’s exponential spectral density
Tpw is asymptotically chi-square distributed for any finite From this observation we
propose a modifieﬂf,iw which is asymptotically chi-square distributed. In view of likeli-
hood ratio, we also mention the asymptotics of a natural Whittle likelihood ratidgst
which is always asymptotically chi-square distributed. Its local power is also evaluated.
Numerical studies illuminate interesting featured pjy, T;W, andTw_r Because many
versions of the portmanteau test have been proposed, and been used in variety of fields,
our systematic approach for portmanteau tests and proposal of tests will give another view
and useful applications.

Some Key words: ARMA model; Exponential spectral model; LAN; local power;
Portmanteau test; Time series model checking; Whittle likelihood.

1. Introduction

In time series model building, it is usual to verify the adequacy of a fitted model by
computing residual autocorrelations. For this Box and Pierce (1970) proposed a test
statistic

m
Tep=n) ff. (1-1)
k=1



wherery is the sample autocorrelation of I&gof the estimated residual process. Here

n is the sample size, antlzp is called the portmanteau test statistic. Under the null
hypothesis that the ARMA(p,q) model is adequate, Box and Pierce (1970) suggested that
the distribution ofTgp is approximated b)k%]_p_q, "if mandn are moderately large”.
However, Davies et al. (1977) claimed that I\Pfﬁz_p_q -approximation is not adequate,

i.e., showed that, even for moderately largandm = 20, the true significance levels

are likely to be much lower than predicted by asymptotic theory. Ljung and Box (1978)
proposed an improved version Bp:

Tie =n(n+ 2)Zm:(n R (1-2)
k=1

which is called the Ljung-Box test statistic. However, Ansley and Newbold (1979) re-
ported that the asymptotic significance levelshy yield a serious understatementfide

and Rodiguez (2002) proposed a new portmanteau test for time series which is more
powerful than Ljung and Box test. For diagnostic checking in ARMA models with non-
independent innovations, Francg, Roy and Zakg2005) showed that portmanteau tests
can perform poorly in this framework. Various modified versions of portmanteau test can
be found in e.g., Lobato et al (2001), Hipel and McLeod (2005), Li (2004), Arranz (2005)
and Katayama (2007, 2008).

In many application fields, portmanteau tests, especi@ily, and T, g, have been
widely used. It is very important to develop the systematic asymptotic theory which
grasps the portmanteau tests. This paper elucidates that the portmanteau tests are essen-
tially equivalent to a special form of Whittle likelihood rafigy for the spectral density
fo,.0,) (1) of (2:3) in Section 2, which tests whether the residual correlation parameter
0, satisfiesH : 6, = 0 or A : 8, # 0. Then, it is shown that, undét, for any finite
m = dimé,, Tpw —» Xﬁkp_q in distribution asn — co. This result is caused by the
fact thatTpw uses the Whittle estimatay for the modelf(g, o)1y and thatd,(61) for the
estimated modell((;lﬁz)(/l). As an auxiliary result we show that, if the time series structure
has Bloomfield’s exponential spectral model, then, for any fimte Tpyw — Xﬁ]_dim o

in distribution unde. Also we propose a modifie‘ﬂ;W which is asymptotically chi-
square distributed.

In view of likelihood ratio we mention the asymptotics of a natural Whittle likeli-
hood ratio tesfTyr Which is based om; and @1, 6-) which is the Whittle estimator
for the modelfi, 6,)(1). Then it is shown (i)Twir — x? in distribution undeH, and
(i) TwLr — a noncentral?-distribution in distribution under a sequence of contiguous
alternativesA, : 6, = h/4/n. Numerical studies foll py, TE,W and Ty r are provided.
They illuminate an interesting feature of them. Since the portmanteau tests are important
benchmark statistics, our systematic studies for them give another view.

2. Interpretation of portmanteau test as a special Whittle likelihood ratio

In this section we show that portmanteau tests proposed by Box and Pierce (1970), Ljung
and Box (1978), etc., are some special forms of Whittle likelihood ratio test for spectra



of concerned stationary processes.
Suppose thatx;} is generated by

p q
Zajxt—j =Zﬁjut—j, (@0 =Bo=1ap#0, Bg#0), (21)

i=0 =0

where{w} is a sequence of independent and identically distributeetylorandom vari-

ables with fourth-order cumulany. Herea(2) = Zfzoajzj andg(2) = Z?:oﬂjzj are

assumed to satisfy(z) # 0 andB(2) # O onD = {z€ C : |7 < 1} and the equations
a(2) = 0 andB(2 = 0 have no common roots. ThéX;} is stationary with spectral
density

| 208" o2
| 2o ajei? 2n
2
(o
= o (4) - Z“ (say).

fo,(4) = (2:2)

wherefd; = (011, ,01p+q) = (a1, - ,ap, B, ,Bq). Lettingé = (0’,9’2)’, where
02 = (621, -+ ,02.m)’, we introduce the following spectral density

|21 B2 g2 [ ,
fo(2) = fopon(l) = ———— - =2 6, €711
1,02 |Z?zoa,je|1/1|2 21 “h

= g (1) 3 { > ez,je"”}, (23)
j=—m

wherefro = 1,0,_j = 6,j. Itis seen thaf(y, 4,)(1) is the spectral density ¢X:} in (2-1)
if {L} is anm-dependent sequence with autocovariaftieg}, and thatfy, (1) in (2-2) is
the spectral density when} is independent and identically distributed wily, = 0 and
E® = o2

Consider the problem of testing

H:6,=0 against A6, 0, (2:4)

which will lead to the problem of portmanteau test. This is rewritteH asi = g against
Ay = Z?;_m 02 je-j where{e} is a sequence of i.i.d.(6-2).

Let X, = (X1,---, Xy) be an observed stretch from {2, and write the periodogram
as
2

In(d) = % . de[-mn] (2:5)

Zn: N
t=1

Although we do not assume Gaussianity X}, if {X;} were Gaussian, the log-likelihood
based orX,, would be approximated by

n 7T
I in{log fo(2) +

In
fo

(1)
Q1 (2:6)



(e.g., Dzhaparidze (1986, p.52), Taniguchi and Kakizawa (2000, section 3.1). Hence we
construct a test statistic by use of

O(fn ) == [ llog o) + L1 @7)

For this we define estimatoﬂ@ andez of 61 and#@,, respectively, as follows:
6, = arg rrallaxD(f(gl,o), 1), (2:8)
62(61) = arg rgzam(f(élﬂz), 1), (2:9)

where 0 in (28) is them-dimensional zero vector. Here it should be noted thé&) is
a function of6;. For the testing problem (2), we introduce a sort of Whittle likelihood
ratio test

Tpw = Zn[D(f(él,éz(g‘l)), In) - D(f(g‘l’o), In)] (2-10)

We call Tpy a portmanteau test of Whittle type.
Then we have the following theorem.
Theorem 1.UnderH : 6, = 0 in (2-3), the following statements hold true.

(i) Tpw—Tap A OandTpw— TiB AN 0 ash — co.

(i) For any fixedm = dim#@,, the asymptotic distribution ofpy does not converge to

X%—p—q asn — oo,

We place all the proofs of theorems in Section 5.

Remark 1. In the literature of portmanteau tests, it is claimed that the distribution of
portmanteau tests convergesxtﬁnrp_q asn — oo if mis "sufficient large”. Katayama
(2008) discussed convergenceTafp and T g to X%Fp—q if m — oco. But it should be
noted that, "ifm is finite, it does not converge Ua,zn_p_q” even if n — . In fact,
for AR(1) model with coflicientas, Ljung (1986) showed thafgp ~ x2, ; + a?™y3,
asymptotically, which flirms these statements. There are many works which say that the
X%’\—p—q approximations for portmanteau tests are not adequate (e.g., Davies et al. (1977)).
In view of our theorem, the results seem natural.

Portmanteau tests have been used for ARMA models.

Let {X;} be generated by

X = aj(0n)u ), (212)
=0
wheref; = (611,--- ,01r)" and{w} is a sequence of random variables wilx = 0O,

EW = o2 and fourth-order cumulant,. We assume that;(61)’s are continuously twice
differentiable with respect #, and satisfy

i aj(61)? < co. (2-12)
j=0



If {u} is uncorrelated, thef¥X;} has the spectral density

2
o

fo, () = (213)

2, a0
j=0

o2
= () 50 (say.

The spectral densityy, (1) is very general, hence, it includes the ARMA(p,q) o2
as a special case. Lettiflg= (67,65)’, whereé, = (621,--- ,62m)’, we introduce the
following spectral density

fo(A) = f(61,6,) (1) = 9o, () - Zu { Z 92,je_'M}, (2-14)
j=—m

whereé,o = 1.
Consider the problem of testing

Hg:0,=0 against A6, #0, (2-15)
which is the generalized form of portmanteau testing problem.
Write
B N 0 [ Fu1 F12
F = i Iﬂ % log fg(/l)ae, log fg(2)da _( Foi Fap |-

In what follows we assume thé&tis nonsingular. For our general spectral model 42,
we have,

Theorem 2. Assumem = dimé&, > r = dim6d;. Then, undeHg : 62 = 0in (214),
the asymptotic distribution ofpy for (2-14) converges tg?, , asn — oo if the matrix
F21F11F12 is idempotent with rankF21F 1 F1a} = .

Corollary 2. If gy, (1) in (2-14) is of the form

0'2 ! .
0p, (1) = > exp{ 61jcosji|, 6i0=1, (2-16)
-0

J

which is called the exponential spectral density (Bloomfield (1973)), then, utger
6, =0,
Tow X%,  asn— . (217)

From Theorems 1 and 2, we observe that the asymptotics of portmanteau type test
Tpw depend on the time series structurgXif strongly.

In the case of ARMA(p,q) model (2), Katayama (2008) proposed a modified statis-
tic T, of Tew such thafl |, is asymptotically2, ,_ distributed undeH in (2:4).

For the general spectral model12), such a modification is possible. Since submatri-
cesF;j of the Fisher information matrix depend on the unknown parangete(?;, 6,)’,
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ie, Fij = Fij(6), we estimateFi; by Fij = Fij(9) whered = (6,02(61)')’. Define
W= F21(F12F21)_1F12, and let

T;W =Tpw - néz(él)’\/NVéz(él). (2-18)

Then we have,
Theorem 3.For (214), assumen > r. Then, undeHg : 6, = 0, it holds that

d
Thw — Xorr (N — o). (2-19)

Here, we do not assume tH%\,ilFIllFlz is idempotent as in Theorem 2.

3. Power Properties forT,f,W and Natural Whittle Likelihood Ratio

This section discusses the local power propertie‘éggg and a natural Whittle likelihood
ratio testTw_r. In the case of ARMA, Katayama (2007) derived the local power of some
portmanteau tests by a Taylor expansion around the hypotHedis what follows, for
general spectra including ARMA, we derive the local poweﬂ'é@jv and Tywr by use
of the LAN theory and LeCam’s third lemma. Although we can use the local asymp-
totic normality (LAN) result for general non-Gaussian linear processes (Theorem 2.2.1
of Taniguchi and Kakizawa (2000)), to avoid unnecessarily complicated notations and
discussion, in what follows, we restrict ourselves to the case when the proekEbsi$2
Gaussian.

Assumption.

() The spectral densityy(1), 8 = (61,6>), is continuously twice dferentiable with
respect t@.

(i) There exist positive constantg andc, such that

c < fD)<c on [-mn]. (31)

(i) The Fisher information matrik is positive definite.

Recall our testing problem:
Hg : 02, =0 against Ag: 62 # 0. (3-2)

We evaluate the local power iﬁfLW under a local alternative

A(Gn) 16y = %h, (3-3)

whereh is a fixedm-dimensional vector.
Theorem 4.Suppose that Assumption holds. Then, un@@r,

d

Thw— Xor (WCH asn— oo, (34)



whereC = lpum — F21(F12F21) "1F12, andy?Z, . {*Ch} is a noncentray? random variable
with (m - r) degrees of freedom and noncentrahfZh.

For the testing problem (3), we are led to think of a natural Whittle likelihood ratio
test.

Define

(61,62) = arg maxD(f, 6, In). (39)
(61.62)

Here we should note that the estimatér, §2(61)) defined by (8) and (29) is essentially
different from 61, 02) Based on the estlmatoel(ez) we can construct the following
Whittle likelihood ratio test

Twir = 2n[D(f, 7, In) — D(f(él,o), In)] (3-6)

for the testing problenilg againstAg.
Write D(fq, 1) in (2:7) asl(61,62). For the problem of testingl: 8, = 0 v.s. A
02 # 0, Newbold (1980) and Li (2004, p.14) used the Lagrange multiplier test

LM = n{ﬁl(él 0)}/ [E {— & (6, 0)} 1{ﬁl(él 0)} (37)
00" 0000 00" ’
Newbold (1980) showed that LM test of ARMA(p,q) against ARMAIQ) is asymptot-
ically equivalent to a standardized quadratic fornk oésidual autocorrelations.
For general spectral densities12) and (214) which include ARMA spectra, we
have the following unified results.

Theorem 5.Suppose that Assumption holds, and: dim#é,. Then, for any fixedn,
the following statements hold true.

() UnderHg,

d
TwLR —>/\(ﬁq, as n— oo, (38)

(i) UnderHg, Twiris asymptotically equivalent to the LM test (3.
(i) UnderAD,

Twir - 2(WF221h)  as N oo, (3.9)

whereF221 = Fa2 — F21F 1 F12, andy?,(h F221h) is a noncentrat? random vari-
able withm degrees of freedom and noncentrality paramietes,..h.

In the next section we will provide numerical results Ty, T;W andTw_r.



4. Numerical studies forTwirand Tp,,

In this section, we give numerical studies of our test statfjcr andTg,W. In Example

4.1, we compare the finite-sample significance levelBpfr, T;W with another famous
portmanteau test; g under MA(1) process. In Example 4.2, under AR(1) process the
finite-sample significance levels Bfy R, TE,W andT g are examined. Then it can be seen

that Tw.r and T;;W are more accurate than g. In Example 4.3, we analyse the local

powers of Twir and T}, under local alternative and we can observe some interesting
power properties. In Examples 4.1 and 4.2, the simulations are besed on 5000 realizations
andn = 200.

Example 4.1.Let {X;} be the MA(1) process

Xt = Up + BUr_1 (41)

whereu¢'s are independent and identically distributed\#6, 1). In Table 1, we report the
5% empirical significance levels dfy rfor m= 1, T;W form= 2 andT g for m= 20.
The parameter values are chosen.4s03 < 0.9.

Table 1 is about here.

From Table 1, we can see that the empirical significance levelsyok, T, are closer
to the assigned value than thoselok.
Example 4.2.Let {X;} be the AR(1) process

Xt + (lxt—l = Ut (4'2)

whereu’s are independent and identically distributedN(®, 1). In Table 2, the 5%
empirical significance levels afy rform= 1, T;W form= 2 andT g for m = 20 are
reported. The parameter values are chosenlas @ < 0.9.

Table 2 is about here.

From Table 2, we can see thB}/ g, TE,W are better thail g.
Example 4.3.Let {X;} be the ARMA(1,1) process

Xt + a1 X1 = U + B1leg (4-3)
where{w} is an m-dependent sequence with mean 0, variance 1 and its autocovariance

functions are&, = %(1, 1,---,1). The parameter values are takengas 0.2,0.4,0.6,0.8

andpB; = 0.1,0.3,0.5,0.7,0.9. From Theorem 5Tw_r converges tq%(h’Fzz.lh) as
n — co. In Tables 3 and 4, the theoretical local powers for an 5% level teBlpk are
reported fom = 5, 10 respectively.

Tables 3 and 4 are about here.

From Tables 3 and 4 we can see that the theoretical local powegy gfincreases as the
parameter values; andg; become large.
From Theorem 47}, converges ta2,_, {Ch} asn — co. In Tables 5 and 6, we

report the theoretical local powers't')i'>W for an 5% level test fom = 5, 10 respectively.

8



Tables 5 and 6 are about here.

From Tables 5 and 6 it may be noted that local poweTZqA‘, increases as the parameter
valuesa; andg; become large.
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[ B [01]02] 03] 04[] 05] 06 07] 08] 09|
Twir || 0.036] 0.043] 0.043] 0.059] 0.077] 0.074] 0.068] 0.057] 0.052
T}, || 0.048] 0.047] 0.048] 0.048| 0.05 [ 0.05 | 0.049] 0.052] 0.05
Tie | 0.072] 0.073] 0.067] 0.076] 0.077] 0.074| 0.083] 0.123] 0.276

Table 1: Empirical significance levels ©fy_r, T;W andT g in Example 4.1.

[ 01 [ 02] 03] 04[] 05] 06] 07] 08] 09 |

Twir || 0.050| 0.059| 0.066| 0.059| 0.056| 0.055| 0.055| 0.045| 0.041
T;,W 0.054| 0.053| 0.049| 0.048| 0.052| 0.044| 0.048| 0.042| 0.042
Tig || 0.051| 0.059| 0.061| 0.061| 0.051| 0.058| 0.054| 0.063| 0.06

Table 2: Empirical significance levels ©fy_r, T;W andT g in Example 4.2.

]a\,B H 0.1 \ 0.3 \ 0.5 \ 0.7 \ 0.9 \

0.2 || 0.840881| 0.873037| 0.895161| 0.909700| 0.915722

0.4 || 0.869604| 0.897393| 0.915605| 0.926447| 0.930437

0.6 || 0.890136| 0.913794| 0.928195| 0.935884| 0.938534

0.8 || 0.902261| 0.922552| 0.934162| 0.940085| 0.942624
Table 3: Theoretical local powers ofy_r in the case o =5 in Example 4.3.

le\p]] 01 | 03 | 05 | 07 [ 09 |

0.2 || 0.993079| 0.994594| 0.995493| 0.996032| 0.996341

0.4 || 0.994389| 0.995629| 0.996357| 0.996784| 0.997041

0.6 || 0.995192| 0.996255| 0.996869| 0.997223| 0.997470

0.8 || 0.995648| 0.996605| 0.997155| 0.997489| 0.997799
Table 4: Theoretical local powers ®fy_rin the case o = 10 in Example 4.3.

]a\,B H 0.1 \ 0.3 \ 0.5 \ 0.7 \ 0.9 \

0.2 || 0.897868| 0.921801| 0.937450| 0.947201| 0.951454

0.4 || 0.919283| 0.939051| 0.951313| 0.958331| 0.961202

0.6 || 0.933815| 0.950049| 0.959469| 0.964473| 0.966424

0.8 || 0.942070| 0.955821| 0.963442| 0.967320| 0.968795

Table 5: Theoretical local powers ﬁ;w in the case o = 5 in Example 4.3.

[@\B] 01 | 03 | 05 | 07 | 09 |
0.2 || 0.995731] 0.996724] 0.997303] 0.997645| 0.997798
0.4 || 0.996591] 0.997390| 0.997852| 0.998118| 0.998233
0.6 || 0.997110| 0.997787| 0.998172| 0.998387| 0.998477
0.8 || 0.997395| 0.998000| 0.998338| 0.998521| 0.998596

Table 6: Theoretical local powers Eﬁw in the case om = 10 in Example 4.3.
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