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Abstract

The conditional least squares (CLS) estimator proposed by Tjφstheim (1986) is
convenient and important for nonlinear time series models. However this convenient
estimator is not generally asymptotically efficient. Hence Chandra and Taniguchi
(2001) proposed a G estimator based on Godambe’s asymptotically optimal esti-
mating function. For important nonlinear time series models, e.g., RCA, GARCH,
nonlinear AR models, we show the asymptotic variance of the G estimator is smaller
than that of the CLS estimator and the G estimator is asymptotically efficient if the
innovation is Gaussian. Numerical studies for the comparison of the asymptotic
variance of the G estimator, that of the CLS estimator and the Fisher information
are also given. They elucidate some interesting features of the G estimator.

Some Key words: asymptotic efficiency; conditional least squares estimator; estimat-
ing function; GARCH model; local asymptotic normality; nonlinear AR model; RCA
model.

1. Introduction

In finance, biology and natural science, there are many cases which linear models
can not fully fit data and wide classes of nonlinear time series models have been proposed.
Random coefficient autoregressive (RCA) model is one of such models and introduced to
describe occasional sharp spikes, exhibited in many fields such as the engineering, econo-
metrics and biology. This important model is represented as autoregressive coefficients
of AR model are random and discussed by many authors (see Nicholls and Quinn (1982)
and Feigin and Tweedie (1985), etc).

Autoregressive conditional heteroskedastic (ARCH) model is the most popular time
series model in econometrics, which is proposed by Engle (1982). In econometrics, there
are many cases a one-period forecast variance is not constant and traditional time series
models could not overcome this difficulty. To overcome this, ARCH model was intro-
duced. Bollerslev (1986) generalized ARCH model, which is defined as generalized au-
toregressive conditional heteroskedastic (GARCH) model. This model is extremely used
in econometric time series.

One of the most important and fundamental estimators for nonlinear time series mod-
els is the conditional least squares (CLS) estimator which is introduced by Tjφstheim
(1986). This estimator has an advantage, which may be represented as a simple lin-
ear form. However it is not generally asymptotically efficient. Amano and Taniguchi
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(2008) applied this convenient estimator to ARCH model and derived a condition for
its asymptotic efficiency. However this condition is strict. On the other hand Chandra
and Taniguchi (2001) constructed G estimators for RCA and ARCH models based on
Godambe’s asymptotically optimal estimating function. They showed these asymptotic
normality and the G estimators are better than the CLS estimators by simulations. In
this paper, we applied this estimator to some important nonlinear time series models,
e.g., RCA, GARCH, nonlinear AR models and show the G estimators are better than the
CLS estimators in the sense of the magnitude of the asymptotic variances. Furthermore
we show the G estimators are asymptotically efficient, if the innovations are Gaussian.
Numerical studies give interesting features of the G estimators.

This paper is organized as follows. Section 2 summarizes the definitions of G and
CLS estimators. In Section 3, we give the asymptotic results of these estimators for RCA
model and show the asymptotic variance of the G estimator is smaller than that of CLS
estimator and if the innovation is Gaussian the G estimator becomes asymptotically ef-
ficient. In Section 4, when the model is GARCH model, we prove G estimator is better
than the CLS estimator in the sense of the magnitude of the asymptotic variances and
under a condition that the innovation is Gaussian the G estimator is asymptotically ef-
ficient. In Section 5, when the model follows nonlinear AR model, it is shown that the
CLS estimator coincides with the G estimator and if the innovation is Gaussian, G and
CLS estimators are asymptotically efficient. Section 6 provides numerical studies, which
show how the G estimator is good. Proofs of theorems are relegated to Section 7.

2. CLS and G estimators for nonlinear time series models

One of the most fundamental estimators for the parameters of nonlinear time series
model{Xt} is the conditional least squares (CLS) estimatorθ̂(CL)

n introduced by Tjφstheim
(1986). It is obtained by minimizing the penalty function

Qn(θ) ≡
n∑

t=k+1

[Xt − E[Xt|Ft(k)]]2 (2·1)

whereFt(k) is theσ-algebra generated by{Xs : t − k ≤ s≤ t − 1} andk is an appropriate
positive integer (e.g. if{Xt} follows am-th order nonlinear autoregressive model, we can
takek = m). The CLS estimator has the simple expression generally. However, it is not
asymptotically efficient in general. Hence Chandra and Taniguchi (2001) constructed an
estimatorθ̂(G)

n based on Godambe’s asymptotically optimal estimating function for non-
linear time series models. For the definition ofθ̂(G)

n , we prepare the following estimating
functionG(θ). Let {Xt} be a stochastic process which is depending on thek-dimensional
parameterθ0, thenG(θ) is

G(θ) =

n∑

t=1

at−1ht (2·2)

whereat−1 is ak-dimensional vector depending onX1, · · · ,Xt−1 andθ, ht = Xt−E[Xt|Ft−1]
andFt−1 is theσ-field generated by{Xs, s≤ t − 1}. An estimating function estimatorθ̂(E)

n
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for the parameterθ0 is defined asG(θ̂(E)
n ) = 0. Chandra and Taniguchi (2001) derived the

asymptotic variance of
√

n(θ̂(E)
n − θ0) is

[
1
n

E
∂

∂θ
G(θ0)

]−1 E{G(θ0)G′(θ0)}
n


[
1
n

E
∂

∂θ
G(θ0)

]−1
′

(2·3)

and gived the following lemma by extending the result of Godambe (1985).

Lemma 2.1. The asymptotic variance (2·3) is minimized ifG(θ) = G∗(θ) where

G∗(θ) =

n∑

t=1

a∗t−1ht, (2·4)

a∗t−1 = E

[
∂ht

∂θ

∣∣∣∣∣ Ft−1

]
E

[
h2

t |Ft−1

]−1
. (2·5)

3. Efficiency of the estimators for RCA model

In this section, we apply CLS and G estimators to Random coefficient autoregressive
(RCA) model and discuss the efficiency of CLS and G estimators for the parameterθ0 of
RCA model. Then we prove the G estimator is more efficient than the CLS estimator and
under{εt} and{zt} are Gaussian, it is asymptotically efficient based on the local asymptotic
normality (LAN).

RCA model of orderk is

Xt =

k∑

j=1

(θ0, j + zt( j))Xt− j + εt (3·1)

where {εt} is a sequence of i.i.d random variables with mean 0, varianceσ2, spectral
density f (·) andzt = (zt(1), · · · , zt(k))′ is a sequence of i.i.d random vectors with mean
vector 0 and covariance matrix

Σ =



σ2
1 0

. . .

0 σ2
k

 (3·2)

and we assume{εt}, {zt(1)}, · · · , {zt(k)} are independent.
If we apply the CLS estimator to RCA model, the penalty function is

Qn(θ) =

n∑

t=k+1

[Xt − θ′Xt−1]2 (3·3)

whereθ ≡ (θ1, · · · , θk)′, Xt−1 = (Xt−1, · · · ,Xt−k)′ and due to the usual linear regression
theory, this estimator has the following representaion

θ̂(CL)
n =


n∑

t=k+1

Xt−1X′t−1


−1 

n∑

t=k+1

Xt−1Xt

 . (3·4)

We impose the following assumptions to describe the asymptotics ofθ̂(CL)
n .
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Assumption 3.1. (i) Let λ(A) be the maximum eigenvalue of a matrixA in modulus,
then we suppose the parameterθ0 = (θ0,1, · · · , θ0,k)′ and the covariance matrixΣ
satisfy

λ(θ0θ
′
0 + Σ) < 1 (3·5)

(ii)

E[X2
t ] < ∞ (3·6)

Assumption (i) implies{Xt} to be strict stationary and ergotic (see Feigin and Tweedie
(1985)). From Tjφstheim (1986), the following lemma holds.

Lemma 3.1. Under Assumption 3.1,

√
n(θ̂(CL)

n − θ0)
d−→ N(0,U−1WU−1) (3·7)

where

U = E
[
Xt−1X′t−1

]
(3·8)

W = E
[
(Xt − θ′0Xt−1)2Xt−1X′t−1

]
= E

[
var(Xt|Xt−1)Xt−1X′t−1

]
. (3·9)

The CLS estimator has a simple and explicit form (3·4) and not require the knowledge
of the distribution of{zt} and{εt}.

Based on the estimating functionG∗(θ) in Lemma 2.1 and the observations{X1, · · · ,Xn},
Chandra and Taniguchi (2001) derived a Godambe’s asymptotically optimal estimating
function estimator̂θ(G)

n for the parameter ofθ0 of RCA model

θ̂(G)
n =


n∑

t=k+1

Xt−1X′t−1

φt


−1 

n∑

t=k+1

Xt−1Xt

φt

 (3·10)

whereφt = E[h2
t |Ft−1] = σ2 + X′t−1ΣXt−1 and gived the following lemma.

Lemma 3.2. Under Assumption 3.1, ifV ≡ E
[

Xt−1X′t−1
var(Xt |Xt−1)

]
is a positive definite matrix

with bounded elements, thenθ̂(G)
n for the parameterθ0 of RCA model satisfies

√
n(θ̂(G)

n − θ0)
d−→ N(0,V−1). (3·11)

Next, we state the main theorem to compare efficiencies of the G estimator and the
CLS estimator, whose proof is given in section??

Theorem 3.1. Suppose that Assumption 3.1 holds. Then the following statements hold
true.

(i) The asymptotic variances ofθ̂(CL)
n and θ̂(G)

n satisfy the following inequality

U−1WU−1 ≥ V−1. (3·12)
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(ii) The equality holds if and only if

var(Xt|Xt−1) = c a.s (3·13)

for some constantc.

From this theorem it is implied that the G estimator is more efficient than the CLS
estimator and a condition for the efficiency ofθ̂(CL)

n to equal that of̂θ(G)
n is strict. Next we

give a conditionθ̂(G)
n is asymptotically efficient based on LAN. The following lemma is

given by Hwang and Basawa (1993).

Lemma 3.3. Under Assumption 3.1, RCA model has LAN with the central sequence

∆n ≡ 2√
n

n∑

t=1

φ̇t(θ0) (3·14)

and the Fisher information matrix

Γ = Γ(θ0) = 4E
[
φ̇t(θ0)φ̇t(θ0)′

]
(3·15)

wheregθ(Xt|Xt−1) is the conditional density ofXt given Xt−1 under the parameterθ,

φt(θ∗, θ0) =

[
gθ∗ (Xt |Xt−1)
gθ0(Xt |Xt−1)

] 1
2

and φ̇t(θ0) = ∂
∂θ∗φt(θ∗, θ0)

∣∣∣
θ∗=θ0

.

Let {Yt} be a stochastic process which depends on thep-dimensional parameterγ and
definePγ,n as the distribution of (Y1,Y2, · · · ,Yn). We define an estimator{Tn} for the
parameterγ of {Yt} is regular if the following condition holds.

√
n(Tn − γn)

d−→ N(0,Σ−1(γ)) underPγn,n (3·16)

whereγn = γ + h√
n
, h is an anyp dimensional constant vector and a matrixΣ−1(γ)

depends onγ. If {Pγ,n} has LAN and its Fisher information matrix isΓ(γ), for any regular
estimator,Σ−1(γ) satisfies (see Hall and Mathiason (1990)).

Σ−1(γ) ≥ Γ−1(γ). (3·17)

Hence ifΣ−1(γ) corresponds withΓ−1(γ), we say that the regular estimator is asymp-
totically efficient. The following theorem gives the condition thatθ̂(G)

n is asymptotically
efficient, that isV−1 = Γ−1(θ0).

Theorem 3.2. Under Assumption 3.1, the following statements are satisfied.

(i) The asymptotic variance ofθ̂(G)
n satisfy

V−1 ≥ Γ−1. (3·18)

(ii) If {εt} and{zt} are Gaussian, then̂θ(G)
n is asymptotically efficient, that is

V−1 = Γ−1. (3·19)
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Theorem 3.1 implies, the condition for the asymptotic variance ofθ̂(CL)
n to equal that of

θ̂(G)
n is severe. Hence we consider the efficiency ofθ̂(CL)

n relative toθ̂(G)
n . For convenience

we assumeθ0 = 0. If we defineR(0) = var(Xt), U = R(0)I k whereI k is the identity matrix
of orderk. Hence the asymptotic variance ofθ̂(CL)

n is

U−1WU−1 =
1

R2(0)
E[φtXt−1X′t−1] (3·20)

∼ 1
(n− k)

1
R2(0)

n∑

t=k+1

φtXt−1X′t−1 (3·21)

=
1

R(0)
X′ΦX, (3·22)

where

X =
1√

n− k
√

R(0)



Xn−1 · · · Xn−k
...

. . .
...

Xk · · · X1

 and Φ =



φn 0
. . .

0 φk+1

 . (3·23)

Similarly, the asymptotic variance ofθ̂(G)
n is approximated by

V−1 ∼ 1
R(0)

(
X′Φ−1X

)−1
. (3·24)

If we define a measure of efficiency of θ̂(CL)
n relative toθ̂(G)

n as |V−1|
|U−1WU−1| , then from the

above discussion this efficiency is approximated by

|V−1|
|U−1WU−1| ∼ (|X′ΦX||X′Φ−1X|)−1 (3·25)

where| · | is the determinant of the matrix. SinceX′X ∼ I k, the right hand side of (3·25)
has the lower bound (Bloomfield and Watson (1975))

(|X′ΦX||X′Φ−1X|)−1 ≥ Πk
l=1

4φ̃l φ̃n−k−l+1

(φ̃l + φ̃n−k−l+1)2
. (3·26)

where (̃φ1, · · · , φ̃n−k) is the ordered sequence of (φk+1, · · · , φn).

4. Asymptotics and efficiency of GARCH models

In this section, CLS and G estimators are applied to GARCH model which is defined
as,

{
Xt = εt

√
Ut

Ut = a0 +
∑q

j=1 a jX2
t− j +

∑p
i=1 biUt−i

(4·1)

wherea0 > 0, a j ≥ 0, j = 1, · · · , q, bi ≥ 0, i = 1, · · · , p, and{εt} is a sequence of i.i.d
random variables with mean 0, variance 1, fourth-order cumulantκ4 and denstityg(·). We
impose the following assumption for this model.
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Assumption 4.1.

q∑

j=1

a j +

p∑

i=1

bi < 1 (4·2)

This assumption implies GARCH(p,q) model is strict stationary, ergotic and has sec-
ond order moments (see Ling and Li (1997)).

We estimate the parameterθ0 = (a0,a1, · · · , aq, b1, · · · ,bp)′. For construction of the
estimators, we letYt ≡ X2

t andm = max(p,q). Then the CLS estimator for the parameter
of the squared strech of GARCH(p,q) model is obtained by minimizing

Qn(θ) =

n∑

t=m+1

[Yt − E[Yt|Ft(m)]]2 (4·3)

=

n∑

t=m+1

[Yt − Ut]
2 (4·4)

and it may be written as the followng explicit representation

θ̂(CL)
n =


n∑

t=m+1

Yt−1Y′t−1


−1

(
n∑

t=m+1

Yt−1Yt) (4·5)

whereYt−1 = (1,Yt−1, · · · ,Yt−q,Ut−1, · · · ,Ut−p)′. For the asymptotic normality of this
estimator, the following assumption is imposed.

Assumption 4.2.

E[X4
t ] < ∞ (4·6)

Due to Tjφstheim (1986), the following lemma holds.

Lemma 4.1. Under Assumptions 4.1 and 4.2,

√
n(θ̂(CL)

n − θ0)
d−→ N(0,U−1WU−1) (4·7)

where

U = E[Yt−1Y′t−1], (4·8)

W = (κ4 + 2)E
[
U2

t Yt−1Y′t−1

]
, (4·9)

Yt−1 = (1,Yt−1, · · · ,Yt−q,Ut−1, · · · ,Ut−p)′. (4·10)

Next, we define the G estimator for the parameter of GARCH(p,q) model. The mar-
tingale differenceht of Yt becomes

ht = Yt − E[Yt|Ft−1] = Yt − θ′Yt−1 = Ut(ε
2
t − 1) (4·11)
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and from this representation, we can obtain

E[h2
t |Ft−1] = (κ4 + 2)U2

t . (4·12)

If we differentiateht with respect toθ, it is seen that

∂ht

∂θ
= −Yt−1 (4·13)

and its conditional expectation underFt−1 is

E

[
∂ht

∂θ

∣∣∣∣∣ Ft−1

]
= −Yt−1. (4·14)

Hence from Lemma 2.1, the G estimator for the parameterθ0 is

θ̂(G)
n =


n∑

t=m+1

Yt−1Y′t−1

U2
t


−1 

n∑

t=m+1

Yt−1Yt

U2
t

 . (4·15)

To evaluate the efficiency of CLS and G estimators, the following lemma is given.

Lemma 4.2. Under Assumptions 4.1 and 4.2, ifV ≡ 1
(κ4+2)E

[
Yt−1Y′t−1

U2
t

]
is a positive definite

matrix with bounded elements, then

θ̂(G)
n

a.s−→ θ0 (4·16)

and

√
n(θ̂(G)

n − θ0)
d−→ N(0,V−1). (4·17)

The proof of this lemma is relegated to Section 7. Now we state the main theorem for
the comparison of the efficiencies of CLS and G estimators.

Theorem 4.1. Under Assumptions 4.1 and 4.2, it holds that

U−1WU−1 ≥ V−1 (4·18)

and the necessary and sufficient condition for the equality is there exists some constantc
such that

a0 +

q∑

j=1

a jX
2
t− j +

p∑

i=1

biUt−i = c a.s. (4·19)

The condition that the asymptotic variances of CLS and G estimators coincide with is
severe. Thus we discuss the asymptotic efficiency of the G estimator based on LAN. We
impose the following assumptions.

Assumption 4.3.The polynomials(1−∑p
i=1 bizi) and

∑q
j=1 a jzj−1 have no common roots.
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Assumption 4.4. The innovation densityg(·) is symmetric, twice continuously differen-
tiable, and satisfies

(i)

0 <
∫ {

ġ(u)
g(u)

}2

g(u)du< ∞ (4·20)

∫ {
ġ(u)
g(u)

}4

g(u)du< ∞ (4·21)

(ii)

lim
|u|→∞

ug(u) = 0 lim
|u|→∞

u2ġ(u) = 0 (4·22)

Lee and Taniguchi (2005) showed the following results.

Lemma 4.3. Under Assumptions 4.1, 4.2, 4.3 and 4.4, GARCH(p,q) model has LAN with
the central sequence

∆n =
1√
n

n∑

t=1

{
− 1

2Ut

(
ġ(ut)
g(ut)

ut + 1

)
Yt−1

}
(4·23)

and the Fisher information matrix

Γ = Γ(θ0) =
1
4

E


(
ġ(ut)
g(ut)

ut + 1

)2 Yt−1Y′t−1

U2
t

 . (4·24)

From the Lemma 4.3, the asymptotic variance of the G estimatorV−1 satisfies

V−1 ≥ Γ−1 (4·25)

and for this inequality we obtain the following theorem.

Theorem 4.2. The G estimator is asymptotically efficient, that is

V−1 = Γ−1 (4·26)

if and only if{ut} is Gaussian.

5. Nonlinear AR models

Nonlinear AR model is very important model, which is motivated by dynamical
systems directly. In this section, we apply CLS and G estimators to this model which has
the representation

Xt = Fθ0(Xt−1, · · · ,Xt−k) + ut (5·1)
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whereθ0 is a p-dimensional parameter,Fθ0 : Rk → R is a measurable function which
depends onθ0, {ut} is a sequence of i.i.d random variables with mean 0, variance 1 and
density f . This model includes SETAR model

Xt =

q∑

j=1

(a j0 +

k∑

i=1

a ji Xt−i)χ(Xt−d ∈ I j) + ut (5·2)

whereI1 = (−∞, r1), I2 = [r1, r2), · · · , I j = [r j−1,∞), d is a positive integer andχ(·) is
the indicator function. Another model included in nonlinear AR model is EXPAR model

Xt = {a1 + b1 exp(−cX2
t−d)}Xt−1 + · · · + {ak + bk exp(−cX2

t−d)}Xt−k + ut (5·3)

wherec ≥ 0, d ∈ N, a j ,b j are real constants. To construct the CLS estimator for the
parameterθ0, let Xt = (Xt−1, · · · ,Xt−k)′. Then the conditional expectation ofXt under
Ft(k) and the parameterθ is

E[Xt|Ft(k)] = Fθ(X′t) (5·4)

and the penalty function is

Qn(θ) =

n∑

t=k+1

[Xt − Fθ(X′t)]
2. (5·5)

The CLS estimator̂θ(CL)
n is given by minimizing the penalty functionQn(θ), that is which

satisfies

∂Qn(θ)
∂θ

= 0. (5·6)

From (5·6), it can be seen thatθ̂(CL)
n is obtained by solving the followin equality

n∑

t=k+1

Xt
∂Fθ(X′t)
∂θ

=

n∑

t=k+1

Fθ(X′t)
∂Fθ(X′t)
∂θ

. (5·7)

Next we construct the G estimatorθ̂(G)
n . For nonlinear AR model, the martingale

differenceht is given by

ht = Xt − E[Xt|Ft−1] = Xt − Fθ(X′t) (5·8)

and

E[h2
t |Ft−1] = E[u2

t ] = 1. (5·9)

Differentialht with respect toθ becomes

∂ht

∂θ
= −∂Fθ(X′t)

∂θ
(5·10)
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and its conditional expectation is

E

[
∂ht

∂θ

∣∣∣∣∣ Ft−1

]
= −∂Fθ(X′t)

∂θ
. (5·11)

Hence from Lemma 2.1, the G estimator satisfies the following equation

n∑

t=k+1

∂Fθ(X′t)
∂θ

(Xt − Fθ(X′t)) = 0. (5·12)

Thusθ̂(G)
n corresponds witĥθ(CL)

n . In order to obtain the asymptotics of G and CLS esti-
mators, we impose the following assumption.

Assumption 5.1. (i) There exist a positive numberλ < 1 and a constantc such that

|Fθ0(x1, · · · , xk)| ≤ λmax(|x1|, · · · , |xk|) + c (5·13)

(ii)

Eθ|Fθ(Xt−1, · · · ,Xt−k)|2 < ∞ (5·14)

(iii) Fθ(X′t) is almost surely three times continuously differentiable.

(iv) For j, k = 1, · · · , p

E


∣∣∣∣∣∣
∂

∂θ j
Fθ0(X

′
t)

∣∣∣∣∣∣
2 < ∞ and E


∣∣∣∣∣∣
∂2

∂θ j∂θk
Fθ0(X

′
t)

∣∣∣∣∣∣
2 < ∞ (5·15)

(v) If c1, · · · , cp are arbitrary real numbers such that

E



∣∣∣∣∣∣∣∣

p∑

j=1

c j
∂

∂θ j
Fθ0(X

′
t)

∣∣∣∣∣∣∣∣

2 = 0, (5·16)

thenc1 = c2 = · · · = cp = 0.

(vi) There exist functionsGi jk
t−1(Xt) andHi jk

t (Xt, · · · ,X1) such that fori, j, k = 1, · · · , p
∣∣∣∣∣∣
∂

∂θi
Fθ(X′t)

∂2

∂θ j∂θk
Fθ(X′t)

∣∣∣∣∣∣ ≤ Gi jk
t−1, E[Gi jk

t−1] < ∞ (5·17)

and (5·18)∣∣∣∣∣∣
{
Xt − Fθ(X′t)

} ∂3

∂θi∂θ j∂θk
Fθ(X′t)

∣∣∣∣∣∣ ≤ Hi jk
t , E[Hi jk

t ] < ∞ (5·19)

(vii)

E

[
∂

∂θ
Fθ(X′t)

′ ∂
∂θ

Fθ(X′t)
]
< ∞ (5·20)
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The condition (i) implies nonlinear AR model{Xt} is strict stationary and ergodic.
Due to Tjφstheim (1986), we have the following lemma.

Lemma 5.1. Under Assumption 5.1,

√
n(θ̂(CL)

n − θ0)
d−→ N(0,U−1WU−1) (5·21)

where

U = E

[
∂Fθ0(X

′
t)

∂θ

∂Fθ0(X
′
t)

∂θ′

]
(5·22)

W = E

[
∂Fθ0(X

′
t)

∂θ

∂Fθ0(X
′
t)

∂θ′
u2

t

]
. (5·23)

Note thatut is independent of
∂Fθ0(X′t )

∂θ andE[u2
t ] = 1, henceW = U and the asymp-

totic variance of CLS and G estimator is

U−1. (5·24)

Since the efficiency of CLS equals that of the G estimator, we are going to discuss its
asymptotic efficiency. We set down the following assumption.

Assumption 5.2. (i)

lim
|x|→∞

|x| f (x) = 0 (5·25)

(ii) The continuous derivativėf of f (·) exists and
∫
| f −1 ḟ |4 f (x)dx< ∞

∫
|x2|| f −1 ḟ |2 f (x)dx< ∞ (5·26)

The following lemma is due to Kato, Taniguchi and Honda (2006).

Lemma 5.2. Under Assumptions 5.1 and 5.2, nonlinear AR model has LAN and its Fisher
information matrixΓ is

Γ = E


(

ḟ (ut)
f (ut)

)2 U. (5·27)

This lemma implies

U−1 ≥ Γ−1. (5·28)

If the equality holds, CLS and G estimator is asymptotically efficient. We give the folloing
necessary and sufficient condition for this asymptotic efficiency.

Theorem 5.1. A necessary and sufficient condition that the folloing equality holds is{ut}
is Gaussian.

U−1 = Γ−1 (5·29)
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6. Numerical Study

In this section, by use of some measures, we compare the asymptotic variances
U−1WU−1, V−1 and the Fisher boundΓ−1 numerically. When the model satisfies RCA
model, the asymptotic variance of the G estimator is compared with that of CLS in Ex-
ample 6.1 and with the Fisher bound in Example 6.2. Under GARCH model, we compare
the asymptotic variance of the G estimator with that of CLS in Example 6.3 and with the
Fisher bound in Example 6.4. Then we see how the G estimator is better than CLS and
close to the efficient estimator. Some interesting features are also obtained.

Example 6.1. Let us consider the following RCA(k) model.

Xt =

k∑

j=1

zt( j)Xt− j + εt (6·1)

Here {zt = (zt(1), · · · , zt(k))} is i.i.d. N(0, σ2I ) and {εt} is i.i.d. N(0,1). For (6·1), the
lower bound (3·26) of |V−1|

|U−1WU−1| is calculated with the length of observationsn = 100.
Based on1000times simulation, we give the sample mean of this lower bound. In Figure
1, we setk = 5 and these lower bounds in the case of0.1 ≤ σ ≤ 0.9 are plotted.

Figure 1 is about here.

From Figure 1, we see that the lower bounds of the efficiency of CLS relative to the G
estimator decreases asσ is large. This implies the conditional variance ofXt under the
information up tot becomes small, when the variaions of random coefficients are large.

Example 6.2. We consider the following RCA(1) models.

Xt = (θ0 + zt)Xt−1 + εt (6·2)

whereθ0 is a constant,{εt} is a sequence of i.i.d. random variables with mean0 and
variance1 and{zt} is a sequence of i.i.d. random variables with mean0 and varianceσ2.
{εt} and {zt} are assumed to be independent. For (6·2), based on1000 times simulation
we calculate the asymptotic varianceV−1 of the G estimator and the Fisher boundΓ−1.
In Figure 2, we setzt ∼ BEx( σ√

2
), εt ∼ BEx( 1√

2
) and θ0 = 0.5. ThenV−1 and Γ−1 are

plotted in the case of0 ≤ σ ≤ 0.5.

Figure 2 is about here.

From Figure 2, the difference ofV−1 andΓ−1 is constant even ifσ changes.

Example 6.3. Let {Xt} satisfy the following ARCH(1) models.

Xt = εt

√
a0 + a1X2

t−1 (6·3)

wherea0 > 0, a1 ≥ 0 and{εt} is i.i.d. N(0, 1). For (6·3), based on1000times simulation
the asymptotic variancesV−1 of the G estimator andU−1WU−1 of the CLS estimator
are calculated. In Figure 3, we seta0 = 0.5 and the efficiency of CLS relative to the G

estimator |V−1|
|U−1WU−1| are plotted in the case of0.1 ≤ a1 ≤ 0.9.
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Figure 3 is about here.

From Figure 3, the efficiency of CLS relative to the G estimator is small when the variance
of the innovationεt is lage. Due to this, if the variation of the conditonal variancea0 +

a1X2
t−1 is larege, the efficiency becomes small.

Example 6.4. The following GARCH(p,q) models are considered.

{
Xt = εt

√
Ut

Ut = a0 +
∑q

j=1 a jX2
t− j +

∑p
i=1 biUt−i

(6·4)

wherea0 > 0, a j ≥ 0, j = 1, · · · , q, bi ≥ 0, i = 1, · · · , p, and {εt} is a sequence of i.i.d
random variables with mean0, variance1and the densityg(·). Based on1000times simu-

lation, we calculate the efficiency of the G estimator|Γ
−1|
|V−1| . Since|Γ

−1|
|V−1| = 4

(E[ε4
t ]−1)E[ ġ(εt )

g(εt )
εt+1]2

,

the efficiency doesn’t depend on the parametera0 anda1. Hence in Figure 4, we set{εt}
are i.i.d. t-distribution with degrees of freedomν and we move the parameterν.

Figure 4 is about here.

From Figure 4, the efficiency of the G estimator becomes small as the degrees of freedom
decreases. This means the efficiency decreases as the spread of the distribution is more
than that of Gaussian.
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Figure 1: The lower bound of the efficiency of CLS relative to the G estimator for RCA(5)
model.
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Figure 2:V−1 (dashed line) andΓ−1 (solid line) for RCA(1) models (Xt = (θ0+zt)Xt−1+εt)
with zt ∼ BEx( σ√

2
), εt ∼ BEx( 1√

2
) andθ0 = 0.5, 0≤ σ ≤ 0.5.
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Figure 3: The efficiency of CLS relative to the G estimator for ARCH(1) model with
0.1 ≤ a1 ≤ 0.9.
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Figure 4: The efficiency of the G estimator for GARCH(k) model where the innovation
is t-distribution with the degrees of freedom 5≤ ν ≤ 30.
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