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Abstract

The conditional least squares (CLS) estimator proposed stfigim (1986) is
convenient and important for nonlinear time series models. However this convenient
estimator is not generally asymptoticallgfieient. Hence Chandra and Taniguchi
(2001) proposed a G estimator based on Godambe’s asymptotically optimal esti-
mating function. For important nonlinear time series models, e.g., RCA, GARCH,
nonlinear AR models, we show the asymptotic variance of the G estimator is smaller
than that of the CLS estimator and the G estimator is asymptoticiltyent if the
innovation is Gaussian. Numerical studies for the comparison of the asymptotic
variance of the G estimator, that of the CLS estimator and the Fisher information
are also given. They elucidate some interesting features of the G estimator.

Some Key words: asymptotidficiency; conditional least squares estimator; estimat-
ing function; GARCH model; local asymptotic normality; nonlinear AR model; RCA
model.

1. Introduction

In finance, biology and natural science, there are many cases which linear models
can not fully fit data and wide classes of nonlinear time series models have been proposed.
Random cofficient autoregressive (RCA) model is one of such models and introduced to
describe occasional sharp spikes, exhibited in many fields such as the engineering, econo-
metrics and biology. This important model is represented as autoregressfiieienes
of AR model are random and discussed by many authors (see Nicholls and Quinn (1982)
and Feigin and Tweedie (1985), etc).

Autoregressive conditional heteroskedastic (ARCH) model is the most popular time
series model in econometrics, which is proposed by Engle (1982). In econometrics, there
are many cases a one-period forecast variance is not constant and traditional time series
models could not overcome thisfiiculty. To overcome this, ARCH model was intro-
duced. Bollerslev (1986) generalized ARCH model, which is defined as generalized au-
toregressive conditional heteroskedastic (GARCH) model. This model is extremely used
in econometric time series.

One of the most important and fundamental estimators for nonlinear time series mod-
els is the conditional least squares (CLS) estimator which is introduceddsfh€im
(1986). This estimator has an advantage, which may be represented as a simple lin-
ear form. However it is not generally asymptoticallfigent. Amano and Taniguchi



(2008) applied this convenient estimator to ARCH model and derived a condition for
its asymptotic #iciency. However this condition is strict. On the other hand Chandra
and Taniguchi (2001) constructed G estimators for RCA and ARCH models based on
Godambe’s asymptotically optimal estimating function. They showed these asymptotic
normality and the G estimators are better than the CLS estimators by simulations. In
this paper, we applied this estimator to some important nonlinear time series models,
e.g., RCA, GARCH, nonlinear AR models and show the G estimators are better than the
CLS estimators in the sense of the magnitude of the asymptotic variances. Furthermore
we show the G estimators are asymptoticaligceent, if the innovations are Gaussian.
Numerical studies give interesting features of the G estimators.

This paper is organized as follows. Section 2 summarizes the definitions of G and
CLS estimators. In Section 3, we give the asymptotic results of these estimators for RCA
model and show the asymptotic variance of the G estimator is smaller than that of CLS
estimator and if the innovation is Gaussian the G estimator becomes asymptotically ef-
ficient. In Section 4, when the model is GARCH model, we prove G estimator is better
than the CLS estimator in the sense of the magnitude of the asymptotic variances and
under a condition that the innovation is Gaussian the G estimator is asymptotically ef-
ficient. In Section 5, when the model follows nonlinear AR model, it is shown that the
CLS estimator coincides with the G estimator and if the innovation is Gaussian, G and
CLS estimators are asymptoticallffieient. Section 6 provides numerical studies, which
show how the G estimator is good. Proofs of theorems are relegated to Section 7.

2. CLS and G estimators for nonlinear time series models

One of the most fundamental estimators for the parameters of nonlinear time series
model{X} is the conditional least squares (CLS) estimaﬁBP introduced by T¢stheim
(1986). It is obtained by minimizing the penalty function

Qu(0) = ) [X — EIXIF (N1 (21)

t=k+1

whereF(k) is theo-algebra generated B¥s : t — k < s <t — 1} andk is an appropriate
positive integer (e.g. ifX;} follows am-th order nonlinear autoregressive model, we can
takek = m). The CLS estimator has the simple expression generally. However, it is not
asymptotically éicient in general. Hence Chandra and Taniguchi (2001) constructed an
estimatoréﬁ,G) based on Godambe’s asymptotically optimal estimating function for non-
linear time series models. For the definitior@f;ﬁ'), we prepare the following estimating
functionG(0). Let {X;} be a stochastic process which is depending orkitienensional
parametepy, thenG(0) is

G(O) = > aahy 2:2)
t=1

wherea;_; is ak-dimensional vector depending &, - - - , X;_1 andd, hy = X;—E[X¢|Ft_1]
andF_; is theo-field generated byXg, s < t — 1}. An estimating function estimatrﬁﬁE)
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for the parametey is defined aﬁ(éﬁE)) = 0. Chandra and Taniguchi (2001) derived the
asymptotic variance oi/ﬁ(@ﬁ,E) —6o)is

-1 , -1y
HE%G(HO) W(FEQG(%)} ] (2:3)

1 0
n n oo

and gived the following lemma by extending the result of Godambe (1985).

Lemma 2.1. The asymptotic variance {® is minimized if5(9) = G*(9) where

G'(6) = ) a4, (2:4)
t=1
g = E[(Z—:t Ft—l} E [ht2|Ft—l]_1- (25)

3. Hfficiency of the estimators for RCA model

In this section, we apply CLS and G estimators to Randorfficient autoregressive
(RCA) model and discuss théfieiency of CLS and G estimators for the paraméteof
RCA model. Then we prove the G estimator is mdiecent than the CLS estimator and
under{e} and{z} are Gaussian, it is asymptoticallffieient based on the local asymptotic
normality (LAN).

RCA model of ordek is

k
Xe= ) (0o + 2()Xc + & (31)
j=1

where{g} is a sequence of i.i.d random variables with mean 0, variarfcespectral
density f(-) andz; = (z(1),-- -, z(K)) is a sequence of i.i.d random vectors with mean
vector 0 and covariance matrix

o'i 0
Y= (3-2)
0 o-ﬁ
and we assumgy}, {z(1)}, -- -, {z(K)} are independent.
If we apply the CLS estimator to RCA model, the penalty function is
n
Qn(6) = > [X—6'%a]? (33)
t=k+1
whered = (61,--- ,60k), Xi-1 = (X1, -+ , Xi—x)” and due to the usual linear regression

theory, this estimator has the following representaion

n -1 n
S [ Z Xt—lxi_l] [Z Xt—lxt}- (34)

t=k+1 t=k+1

We impose the following assumptions to describe the asymptot'@ﬁgldf
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Assumption 3.1. (i) LetA(A) be the maximum eigenvalue of a ma#in modulus,

then we suppose the parametigr= (601, - - ,6ok)’” and the covariance matrix
satisfy
A6y +X) <1 (35)
(ii)
E[X?] < oo (3-6)

Assumption (i) impliegX;} to be strict stationary and ergotic (see Feigin and Tweedie
(1985)). From Tgstheim (1986), the following lemma holds.

Lemma 3.1. Under Assumption 3.1,

VREEY — g0) -4 N(O, UtwuU Y (37)

where
U = E[XeaX{ 4] (38)
W = E[ (X - 0pXe-1)?XeaX{_ | = E [var(X/Xe-1)Xe-1X{ 4] (39)

The CLS estimator has a simple and explicit forrdj&nd not require the knowledge
of the distribution ofz;} and{e}.

Based on the estimating functi@i(6) in Lemma 2.1 and the observatidng, - - - , Xn},
Chandra and Taniguchi (2001) derived a Godambe’s asymptotically optimal estimating
function estimato@,ﬂe) for the parameter afy of RCA model

~G) 5 XXy N X1 %
o) 52

t=k+1 t=k+1

whereg; = E[h¢|Fi_1] = o + X{_;EX-1 and gived the following lemma.

Lemma 3.2. Under Assumption 3.1, ¥ = E[%] is a positive definite matrix

with bounded elements, théﬁ) for the parametefly of RCA model satisfies

VRE® — 60) -4 N, V. (311)

Next, we state the main theorem to compafticiencies of the G estimator and the
CLS estimator, whose proof is given in secti@h

Theorem 3.1. Suppose that Assumption 3.1 holds. Then the following statements hold
true.

(i) The asymptotic variances égf b andé,ﬂe) satisfy the following inequality

utwu-t> vt (312)



(i) The equality holds if and only if
var(X;Xi-1) =c as (313)
for some constart.

From this theorem it is implied that the G estimator is mdiecient than the CLS
estimator and a condition for théfieiency of@ﬁCL) to equal that O@E]G) is strict. Next we
give a condition@ﬁ,G) is asymptotically &icient based on LAN. The following lemma is
given by Hwang and Basawa (1993).

Lemma 3.3. Under Assumption 3.1, RCA model has LAN with the central sequence

Bn= 2= ino0) (314)

n t=1

3

and the Fisher information matrix

I' = T'(60) = 4E | $1(60)¢x(60) | (315)
where go(Xi|X-1) is thle conditional density ok; given X{_1 under the paramete#,
00,00 = | EEEB|" and in(00) = (@, 00,y

Let {Y;} be a stochastic process which depends orptbanensional parametgrand
defineP, , as the distribution of Xy, Y2,---,Yn). We define an estimatdiT,} for the
parametety of {Y;} is regular if the following condition holds.

VAT = 7) -5 N@O,= %)) underP,, (3-16)

wherey, = y + % h is an anyp dimensional constant vector and a mattix!(y)
depends oty. If {P, n} has LAN and its Fisher information matrixky), for any regular
estimatorz—(y) satisfies (see Hall and Mathiason (1990)).

L) 2 T(). (317)

Hence if~1(y) corresponds witl'~1(y), we say that the regular estimator is asymp-
totically efficient. The following theorem gives the condition tl@éﬁ) is asymptotically
efficient, that isv—1 = I'"1(6p).

Theorem 3.2. Under Assumption 3.1, the following statements are satisfied.
() The asymptotic variance éﬁe) satisfy

vi>rt (318)

(i) If {&} and{z} are Gaussian, theéﬁG) is asymptotically gicient, that is

vi=r1t (319)



Theorem 3.1 implies, the condition for the asymptotic varianéécﬂﬁ to equal that of
G(G) is severe. Hence we consider tifBaency ofé)(c") relative toéE,G) For convenience
we assumég = 0. If we defineR(0) = var(X;), U R(O)Ikwherelk is the identity matrix
of orderk. Hence the asymptotic varlanceaﬁ

1
uTtwut = RZ(O) E[¢eXt-1X{_4] (3-20)
(n K) RZ(O) zkll(l)t t-1X{_1 (321)
t=k+
_ %xwpx (322)
where

. Xne1 -0 Xnek on 0
=— | . and @ = - (323)

n-k R(O) Xk X1 0 dk+1

Similarly, the asymptotic variance éﬁ,e) is approximated by
-1 '® -1 .
Y, R(O) (X'o7X) . (3-24)

[\

ETET then from the

If we define a measure offeciency oféﬁc") relative toéS,G) as
above discussion thiglciency is approximated by

vV
JU-twu-Y|

where| - | is the determinant of the matrix. SinggX ~ Iy, the right hand side of (35)
has the lower bound (Bloomfield and Watson (1975))

_Adidnicia
(@1 + Prkei1+1)?

where 61, -, ¢n_) is the ordered sequence @1, - - - , én).

~ (IX'®X|IX' @~ 1X])™? (3-25)

(X ®X|IX'®1X|) " > 1T, (326)

4. Asymptotics and dficiency of GARCH models

In this section, CLS and G estimators are applied to GARCH model which is defined

as,
= VUi
4.1
{ Ut = ao+2 antZ_j + %P b (41)
whereag > 0,8; >0, j=1,---,09,b >0,i =1,---,p, and{e} is a sequence of i.i.d

random variables with mean 0, variance 1, fourth-order cumulgenid denstityg(-). We
impose the following assumption for this model.
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Assumption 4.1.

zq:aj+zp:bi<l (42)
i=1

=1

This assumption implies GARCH(p,q) model is strict stationary, ergotic and has sec-
ond order moments (see Ling and Li (1997)).

We estimate the paramet@y = (ag, a,--- ,aq, b1, -+, bp)’. For construction of the
estimators, we leY; = X? andm = max(p, g). Then the CLS estimator for the parameter
of the squared strech of GARCH(p,q) model is obtained by minimizing

n

Qu(0) = > [Yi - E[YdF(m)])? (43)
t=m+1

= > -Ud? (44)
t=m+1

and it may be written as the followng explicit representation

n -1 n
oY = ( Z Yt—lY{_l] ( Z Yi-1Yy) (4-5)

t=m+1 t=m+1

whereYi_1 = (1, Yi_1,- -, Yi_q, Ut-1,- -+ , Ut_p)’. For the asymptotic normality of this
estimator, the following assumption is imposed.

Assumption 4.2.
E[X{] < oo (4-6)
Due to Tippstheim (1986), the following lemma holds.

Lemma 4.1. Under Assumptions 4.1 and 4.2,

VR — o) = N, Utwu ) (7)
where
U=E[Yt1Y4l, (4-8)
W = (ks + 2)E [Utht_lY{_l] : (4-9)
Yt—l = (1’ Yt—l’ S Yt—q, Ut—l’ Tt Ut—p)/- (410)

Next, we define the G estimator for the parameter of GARCH(p,q) model. The mar-
tingale diferenceh; of Y; becomes

he = Y — E[YilFia] = Yi = 6'Yi1 = Uy(e? - 1) (411)



and from this representation, we can obtain
E[NIFi-1] = (ks + 2)UZ. (4-12)

If we differentiaten; with respect td@, it is seen that

ohy
— ==Y 4.13
a5 = Y (413)
and its conditional expectation undgyt ; is
ohy
E|l —|Fi1| = -Yi_1. 4.14
[ 0|t 1] t-1 (4-14)

Hence from Lemma 2.1, the G estimator for the parantgtes

. VA Tt AL Y. 1Y,
G) _ t-1T¢ 1 t-1 Yt '
GE PRI PR (415)

t=m+1 t=m+1

To evaluate theféiciency of CLS and G estimators, the following lemma is given.

Lemma 4.2. Under Assumptions 4.1 and 4.2Vif= (K4—1+2) E [Y"GZ{*] is a positive definite
t
matrix with bounded elements, then
a© 25 g, (4-16)
and
VARG — do) - N(O.V ). (417)

The proof of this lemma is relegated to Section 7. Now we state the main theorem for
the comparison of theficiencies of CLS and G estimators.

Theorem 4.1. Under Assumptions 4.1 and 4.2, it holds that
utwu-t> vt (4-18)

and the necessary andjguaient condition for the equality is there exists some congtant
such that

q p
ao+Zanf_j +ZbiUt_i =c as (4-19)
= =)

The condition that the asymptotic variances of CLS and G estimators coincide with is
severe. Thus we discuss the asymptofiiciency of the G estimator based on LAN. We
impose the following assumptions.

Assumption 4.3. The polynomialgl-¥." , biZ) andz?':1 a;Z~1 have no common roots.



Assumption 4.4. The innovation densitg(:) is symmetric, twice continuouslyf@iren-
tiable, and satisfies

(i)

< f {%}2 g(U)du < oo (4-20)
[ {%}4 g()du < o (421)

(i
lim g =0 fim 1) =0 (422)

Lee and Taniguchi (2005) showed the following results.

Lemma 4.3. Under Assumptions 4.1, 4.2, 4.3 and 4.4, GARCH(p,q) model has LAN with
the central sequence

1) 1 (9w ) }
A——E —— | =—u+ 1| Y 4.23
n n tzl{ 2U¢ (Q(Ut) ' = (423)
and the Fisher information matrix
1_{(9(u) )2 Ye1Yi g
=T =-E|l—uw+1] ———]. 4.24
(60) = 5 [( S U2 (4-24)

From the Lemma 4.3, the asymptotic variance of the G estiméatbsatisfies
visrt (4-25)
and for this inequality we obtain the following theorem.
Theorem 4.2. The G estimator is asymptoticallyfieient, that is
vi=r1 (4-26)

if and only if{u;} is Gaussian.

5. Nonlinear AR models

Nonlinear AR model is very important model, which is motivated by dynamical
systems directly. In this section, we apply CLS and G estimators to this model which has
the representation

Xt = Fgo(Xe=1, -+ » Xt—k) + Ut (51)



wherefy is a p-dimensional parameteFy, : R< - Ris a measurable function which
depends oy, {U} is a sequence of i.i.d random variables with mean 0, variance 1 and
densityf. This model includes SETAR model

k
(ajo + Z aji Xe—i )y (Xe—d € 17) + Ut (52)
1 i1

q
Xt =
j=

wherely = (—oo,r1), l2 = [r1,r2),---,1j = [rj-1, ), d is a positive integer ang(-) is
the indicator function. Another model included in nonlinear AR model is EXPAR model

X = {ag + by expEeX? I Xeeq + -+ + @ + b expEeX2 o) Xk + U (53)

wherec > 0, d € N, aj, b are real constants. To construct the CLS estimator for the
parametedy, let X; = (X1, , X—x)’. Then the conditional expectation ¥f under
Fi(k) and the parameteris

E[XiIFt(K)] = Fo(X:) (54)
and the penalty function is
Qn(0) = > [X - Fo(Xp1% (55)
t=k+1

The CLS estimato@ﬁCL) is given by minimizing the penalty functio@, (), that is which
satisfies

0Qn(6) _
%0 - 0 (56)
From (56), it can be seen théﬁcu is obtained by solving the followin equality
5 OF(X] s OFo(X{
3 ) X 5 i 2RO (57)
4 a0 4 a0
t=k+1 t=k+1

Next we construct the G estimatéﬁ?). For nonlinear AR model, the martingale
differencen; is given by

hy = Xt — E[Xt|Ft-1] = X¢ — Fa(X{) (58)
and
E[h{IFe-1] = E[Uf] = 1 (59)
Differentialh; with respect t@ becomes

ohe _ 9Fp(X})
P a0

(510)
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and its conditional expectation is

ohy _9F(XD)
E F : 11
[ M, 1} o (5:11)
Hence from Lemma 2.1, the G estimator satisfies the following equation
oF (X ) )
3 0Dy yxp) -0 (512)

t=k+1

ThuséﬁG) corresponds With@ﬁCL). In order to obtain the asymptotics of G and CLS esti-
mators, we impose the following assumption.

Assumption 5.1. (i) There exist a positive numbgr< 1 and a constant such that
IFao (X1, -+ > Xl < Amax(xal, - -, [Xdl) + € (513)

(ii)
ElFo(Xe-1,--+ s %)l < 0o (514)

(iii) Fg(X{) is almost surely three times continuouslelentiable.

(iv) For jk=1,---,p

2 2 2
0
E || Fa (Xt and E F X{ 515
(v) If c1,--- ,cp are arbitrary real numbers such that
0 2
0 /

EEF@Q%MJ (516)

=1

thenci=cp=---=¢cp=0.

VI ere exist functio t) an t,- -, X1) such that on, J,K=1,---,p
(vi) Th f n@”k(X) dH (X X1) such that for, j,k = 1

R (X)) e 69 o FoX0)| < G¥, EIGK] <o (517)
and (5-18)
o3 H i
(X~ o)) g Fa0x)| < HS, BRI <0 (5129)
(vii)
[5 Fo(X}) FH(Xt)] <o (5-20)
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The condition (i) implies nonlinear AR modg¢X;} is strict stationary and ergodic.
Due to Tipstheim (1986), we have the following lemma.

Lemma 5.1. Under Assumption 5.1,

VREECY — g0) -4 N(O, Utwu Y (5:21)
where
__[0Fa,(X}) 9F g, (X)
U= E[ 0 o (5-22)
= [9Fa(XP) OF 4, (X7) 5

Note thaty; is independent O?F*B# andE[u?] = 1, henceW = U and the asymp-
totic variance of CLS and G estimator is

Ut (5-24)

Since the #iciency of CLS equals that of the G estimator, we are going to discuss its
asymptotic éiciency. We set down the following assumption.

Assumption 5.2. (i)
|Ilim IX[f(X) =0 (525)
X|—00

(i) The continuous derivativé of f () exists and
f|f‘1f|4f(x)dx< o0 f|x2||f-1f'|2f(x)dx< o0 (5-26)

The following lemma is due to Kato, Taniguchi and Honda (2006).

Lemma 5.2. Under Assumptions 5.1 and 5.2, nonlinear AR model has LAN and its Fisher

information matrixI is
| fw)?
r=g [( f(ut)) }U. (5-27)

ul>rt (5-28)

This lemma implies

If the equality holds, CLS and G estimator is asymptoticailiceent. We give the folloing
necessary and fiicient condition for this asymptotidigciency.

Theorem 5.1. A necessary and giicient condition that the folloing equality holds{ig}
is Gaussian.

utl=rt (5-29)
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6. Numerical Study

In this section, by use of some measures, we compare the asymptotic variances
U~twu-1, v—1 and the Fisher bounB~—! numerically. When the model satisfies RCA
model, the asymptotic variance of the G estimator is compared with that of CLS in Ex-
ample 6.1 and with the Fisher bound in Example 6.2. Under GARCH model, we compare
the asymptotic variance of the G estimator with that of CLS in Example 6.3 and with the
Fisher bound in Example 6.4. Then we see how the G estimator is better than CLS and
close to the fficient estimator. Some interesting features are also obtained.

Example 6.1. Let us consider the following RCA(k) model.
k
Xi= ) 7% + e (61)
=1

Here {z: = (z(1),--- ,zt(k))} is i.i.d. N(0,c?l) and {g} is i.i.d. N(0,1). For (6-1), the
lower bound (26) Ofldeq is calculated with the length of observations= 100
Based ori000times simulation, we give the sample mean of this lower bound. In Figure

1, we sek = 5 and these lower bounds in the casé®df < o- < 0.9 are plotted.
Figure 1 is about here.

From Figure 1, we see that the lower bounds of tficiency of CLS relative to the G
estimator decreases asis large. This implies the conditional varianceXfunder the
information up tat becomes small, when the variaions of randomflecients are large.

Example 6.2. We consider the following RCA(1) models.
Xt = (6o + Z)Xi-1 + & (6-2)

where6y is a constant{e} is a sequence of i.i.d. random variables with mé&aand
variancel and{z} is a sequence of i.i.d. random variables with m@amnd variancer?.
{e} and {z} are assumed to be independent. FoR2j6based orl000times simulation
we calculate the asymptotic varianve? of the G estimator and the Fisher bouﬁdl
In Figure 2, we set; ~ BEX-%), & ~ BEX -+ ;) andéo = 0.5. ThenV~ Landr1 are

plotted in the case d¥ < o < 0.5.
Figure 2 is about here.

From Figure 2, the dierence ofv~! andI'*! is constant even i changes.

Example 6.3. Let{X;} satisfy the following ARCH(1) models.

X = € +Ja0 + X2, (6-3)

whereag > 0, a; > 0 and{g} is i.i.d. N(0O, 1). For (6-3), based ori000times simulation

the asymptotic varianceg ! of the G estimator andJ~*WU ! of the CLS estimator
are calculated. In Figure 3, we sap = 0.5 and the ¢@iciency of CLS relative to the G
estlmatoruTU'lI are plotted in the case &1 < a; < 0.9.
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Figure 3 is about here.

From Figure 3, thef@iciency of CLS relative to the G estimator is small when the variance
of the innovationg is lage. Due to this, if the variation of the conditonal variaage
a;X? , is larege, the ficiency becomes small.

Example 6.4. The following GARCH(p,q) models are considered.

Xt = & VUy (64)
Ui=ap+ Z?:l aj th_j + Zip:]_ biUt—i
whereag > 0,8;>0,j=1,---,0,6 >0,i = 1,---, p, and{e} is a sequence of i.i.d
random variables with mea® variancel and the densityg(-). Based ori000times simu-

—1 —1
lation, we calculate theficiency of the G estimatc%f/—, L. Sincell -l = 4 ,
y 4 VT (Ele-DE[ EY q+112

the ¢ficiency doesn't depend on the paramedganda;. Hence in Figure 4, we sé¢t;}
are i.i.d. t-distribution with degrees of freedamand we move the parameter

Figure 4 is about here.

From Figure 4, theféciency of the G estimator becomes small as the degrees of freedom
decreases. This means th&aency decreases as the spread of the distribution is more
than that of Gaussian.
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Figure 1. The lower bound of théficiency of CLS relative to the G estimator for RCA(5)
model.

15

1.0

asymptotic variance

0.5

0.0

0.0 0.1 0.2 0.3 0.4 0.5

sigma

Figure 2:V~1 (dashed line) anB~2 (solid line) for RCA(1) modelsX; = (fo+2)Xi_1+€)

with z ~ BEX-%), & ~ BEK%) andgg = 0.5,0< o < 0.5.
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Figure 3: The #iciency of CLS relative to the G estimator for ARCH(1) model with
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Figure 4: The #iciency of the G estimator for GARCH(k) model where the innovation
is t-distribution with the degrees of freedonxs < 30.
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