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Abstract

The sample mean is one of the most natural estimators of the population mean
based on independent identically distributed sample. However, if some control vari-
ate is available, it is known that the control variate method reduces the variance of
the sample mean. The control variate method often assumes that the variable of
intersest and the control variable are i.i.d. Here we assume that these variables are
stationary processes with spectral density matrices, i.e.dependent. Then we propose
an estimator of the mean of the stationary process of interest by using control variate
method based on nonparametric spectral estimator. It is shown that this estimator
improves the sample mean in the sense of mean square error. Also this analysis is
extended to the case when the mean dynamics is of the form of regression. Then we
propose a control variate estimator for the regression coefficients which improves
the least squares estimator (LSE). Numerical studies will be given to see how our
estimator improves the LSE.

JEL classification: C02; C10; C13; C14; C15; C22

Keywords: Control variate method; Stationary processes; Spectral density matrix; Non-
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1. Introduction

The sample mean is one of the most natural estimators for the population mean based
on the i.i.d. sample. When some control variable vector is available (a random vector
which is possibly correlated with the variable of interest), using the information about the
control variate vector, it is known that the control variate method reduces the variance of
the sample mean. That is, if̄Y is a sample mean of i.i.d.sample{Yi}ni=1 with an unknown
meanµY and X is a control variable vector with known mean vectorµX, then for any
constant vectorb, the mean of the control variate estimator ˆµY(b) = Ȳ−b′(X−µX) for µY is
µY and it’s variance isVar[Ȳ]−2b′Cov[Ȳ,X]+b′

∑
X b, where

∑
X is the covariance matrix
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of X andCov[Ȳ,X] is the covariance vector between̄Y andX. Hence if 2b′Cov[Ȳ,X] >
b′

∑
X b, then the variance of the control variate estimator is smaller than that of the sample

mean.
This method has been discussed in the case when the sample and control variable are

i.i.d.. Lavenberg and Welch (1981) reviews analyses of the control variate developed up
to the date. In the paper the valueb∗ of vectorb which minimizes the variance of the
control variate estimator is derived and the confidence interval of ˆµY(b∗) is constructed.
However in practice, since the correlation betweenȲ andX is unknown, thisb∗ is not
known and an estimator̂b∗ of b∗ is proposed. In general the control variate estimator
involving the estimator̂b∗ is not unbaiased and the confidence interval can not be con-
structed easily. They also discuss these problems. Rubinstein and Markus (1985) extends
the results to the case when the sample meanȲ is multidimensional vector and the mul-
tidimensional control variate estimator is represented as ˆµY(B) = Ȳ − B(X − MX), where
B is an arbitary matrix andX is a control variate vector with mean vectorMX. They give
the matrixB∗ which minimizes the determinant ofE{µ̂Y(B)′µ̂Y(B)}, which is called the
generalized variance of ˆµY(B). They also introduce an estimator ofB̂∗ of B∗ and discuss
the confidence ellipsoid. Nelson (1990) proves a central limit theorem of the control vari-
ate estimator. Since a lot of control variate theories have been discussed under a specific
probability structure (usually normal distribution) for the sample and control variates,
a number of authors introduced remedies for violations of these assumptions. Nelson
(1990) gives a systematic analytical evaluation of them. In recent years this method is
applied to financial engineering (e.g., Glasserman (2003), Chan and Wong (2006)).

Since the control variate theory is usually discussed under the assumption that the
sample and control variates are i.i.d, in this paper, when the sample is generated from a
stationary process and some control variable process is available, we propose an estimator
θ̂C of the mean of the concerned process by using control variate method. Then it is shown
that this estimator improves the sample mean in the sense of mean square error (MSE).
The estimator̂θC is expressed in terms of nonparametric estimators for spectra of the
concerned process and the control variate process. We also apply this analysis to the
case when the mean dynamics is of the form of regression. A control variate estimator
for the regression coefficients is proposed and is shown to improve the LSE in the sense
of MSE. Numerical studies show how our estimators behave. Our results have potential
application to various fields, including econometrics in particular.

This paper is organized as follows. In Section 2 we introduce an estimatorθ̂C for
the mean of a stationary process by using control variate method. Section 3 shows this
estimator̂θC improves the sample mean in the sense of MSE. In Section 4, control variate
estimators for the mean which is of the form of regression are proposed and shown to
improve the LSE. Section 5 provides numerical studies which show how our estimators
improve the sample mean. Proofs of theorems are relegated to Section 6. Throughout the
paper we denote the set of all integers byZ, and denote by||(·)|| the Euclidean norm of (·).
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2. Setting

One of the most fundamental estimators of the population mean is the sample mean.
It is known that if the sample is i.i.d, and if some control variable is available, using
the information about the control variateX and its meanµX, the control variate method
improves the mean square error of the sample mean. In this section we apply this method
to the case when the sample is generated by a stationary process and some control variate
process is available, and introduce an estimator of the mean, which improves the variance
of the sample mean. Suppose that{Y(t); t ∈ Z} is a scalar-valued process with mean
E[Y(t)] = θ and{X(t); t ∈ Z} is an another m-dimensional process with the mean vector
E[X(t)] = 0, which is possibly correlated with{Y(t)}. We are now interested in estimation
of θ. Let Z(t) ≡ (Y(t),X′(t))′. The following assumptions are imposed.

Assumption 2.1. {Z(t); t ∈ Z} is generated by the following linear process.

Z(t) =

∞∑

j=0

B( j)ε(t − j) + ~θ (2.1)

where~θ = (θ, 0,0, · · · ,0)′ is m+ 1-dimensional vector andB( j)′s are (m+ 1)× (m+ 1)
matrices and{ε(t)} is a sequence of i.i.d.m + 1-dimensional random vectors with mean
vector0 and covariance matrixK.

HenceforthU , Ui, j andvi denote the sum of all the absolute values of elements of
matrix U, the (i, j)-th element of the matrixU and thei-th element of vectorv, respec-
tively.

Assumption 2.2. (i) Det[
∑∞

u=0 B(u)zu] = 0 has no roots in the unit disc
{z ∈ C; |z| ≤ 1}.

(ii) The coefficient matricesB(u) satisfy

∞∑

u=0

|u|4 B(u) < ∞. (2.2)

Let Cum(Q1, · · · ,Qk) be the joint cumulant of random variablesQ1, · · · ,Qk. We
assume the following.

Assumption 2.3. For k = 3, 4, · · · ,

Cε
k ≡ sup

a1,··· ,ak

|Cum(εa1(0), · · · , εak(0))| < ∞ (2.3)

and

∞∑

L=1


∑

ν

Cε
n1
· · ·Cε

nP

 zL/L! < ∞, (2.4)
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for z in neighborhood of0, where the inner summation is over all indecomposable parti-
tions (see Brillinger (2001), p20)ν = (ν1, · · · , νP) of the table

1 2
3 4
...

...

2L − 1 2L

(2.5)

with νp havingnp > 1 elements,p = 1, · · · ,P.

Write Cuma1,··· ,ak(t1, · · · , tk−1) = Cum{Za1(t1), · · · ,Zak−1(tk−1), Zak(0)} and

Ck ≡ sup
a1,··· ,ak

∞∑

t1,··· ,tk−1=−∞
|Cuma1,··· ,ak(t1, · · · , tk−1)|. (2.6)

Then Assumptions 2.1, 2.2 and 2.3 imply

∞∑

t1,··· ,tk−1=−∞
{1 + |t j |}|Cuma1,··· ,ak(t1, · · · , tk−1)| < ∞ (2.7)

for j = 1, · · · , k− 1 and anyk tuplea1, · · · ,ak whenk = 2,3 · · · , and

∞∑

L=1


∑

ν

Cn1 · · ·CnP

 zL/L! < ∞, (2.8)

where the summation
∑
ν is defined as in (2.4) (see, Brillinger (2001), p48). From As-

sumptions 2.1 and 2.2, it is seen that the process{Z(t)} becomes a stationary process with
nonsingular spectral density matrix (e.g., Brillinger (2001)). We write the spectral density
matrix by

f (λ) =

(
fYY(λ) fYX(λ)
fXY(λ) fXX(λ)

)
. (2.9)

From Assumption 2.2, it follows thatR(s) = {Cumi, j(s)} satisfies

∞∑

s=−∞
|s|4R(s) < ∞, (2.10)

(e.g., Brillinger (2001), p.46). Suppose that partial observations{Y(0),Y(1), · · ·Y(n− 1)}
and {X(−Mn), X(−Mn + 1), · · · , X(0),· · · , X(n − 1)} are available, whereMn = O(nβ)
(1

4 ≤ β < 1
3).

Now we are interested in the estimation ofθ. Based on the observations we introduce
the following estimator̂θC of θ

θ̂C ≡ 1
n

n−1∑

t=0

Y(t) −
Mn∑

u=0

â′n(u)X(t − u)

 , (2.11)
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whereân(u) = 1
2π

∫ π
−π Ân(λ) exp(iuλ)dλ , Ân(λ) = f̂XX(λ)−1 f̂XY(λ). Here f̂XX(λ) and f̂XY(λ)

are, respectively, nonparametric estimators offXX(λ) and fXY(λ) which are defined as,

f̂XY(λ) ≡ 2π
n

n−1∑

s=1

Wn(λ − 2πs
n

)IXY(
2πs
n

) (2.12)

f̂XX(λ) ≡ 2π
n

n−1∑

s=1

Wn(λ − 2πs
n

)IXX(
2πs
n

) (2.13)

whereIXY(µ) andIXX(µ) are submatrices of the periodogram

In(µ) ≡ 1
2πn
{
n−1∑

t=0

Z(t)eitµ}{
n−1∑

t=0

Z(t)eitµ}∗ (2.14)

=

(
IYY(µ) IYX(µ)
IXY(µ) IXX(µ)

)
(say), (2.15)

and {Wn(λ)} are weight functions which are described in the next section. TheÂn(λ)
and ân(u) are shown to be consistent estimators ofA(λ) = fXX(λ)−1 fXY(λ), a(u) =
1
2π

∫ π

−π A(λ) exp(iuλ)dλ, respectively. In the next section we will show that the proposed
estimator̂θC improves the sample mean in the sense of the mean square error (MSE).

3. Asymptotic theory

In this section we elucidate the asymptotics ofθ̂C. Initially, we state the following as-
sumption on{Wn(λ)}.
Assumption 3.1. (i)

Wn(λ) = NnW(Nnλ) (3.1)

whereNn = O(n
1
3 ) and positive andW(x) is bounded , even, non-negative and

satisfies
∫ ∞

−∞
W(x)dx = 1. (3.2)

(ii) Wn(λ) can be expanded asWn(λ) = 1
2π

∑
l w( l

Nn
)e−ilλ, wherew(x) is a continu-

ous, even function withw(0) = 1, |w(x)| ≤ 1 and
∫ ∞
−∞w(x)2dx < ∞, and satisfies

lim |x|→0
1−w(x)
|x| = k1 < ∞ for some constantk1.

Then we get the following theorem.

Theorem 3.1. Suppose Assumptions 2.1, 2.2, 2.3 and 3.1. Then it holds that

lim
n→∞nE|θ̂C − θ|2 = 2π( fYY(0)− fYX(0) fXX(0)−1 fXY(0)). (3.3)
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It is known that the asymptotic variance of the sample meanȲn ≡ 1
n

∑n−1
t=0 Y(t) is

2π fYY(0) (e.g., Brillinger (2001), Theorem 5.2.1). Since

2π( fYY(0)− fYX(0) fXX(0)−1 fXY(0)) ≤ 2π fYY(0), (3.4)

we observe that̂θC improvesȲn in the sense of MSE.

Remark 3.1. If {X(t)} has a known mean vectorµx, we define the control variate esti-
mator θ̂C ≡ 1

n

∑n−1
t=0 {Y(t) −∑Mn

u=0 â′n(u)(X(t − u) − µx)}. However ifµx is unknown, we use

θ̃C ≡ 1
n

∑n−1
t=0 {Y(t) −∑Mn

u=0 â′n(u)(X(t − u) − X̄)} instead ofθ̂C, whereX̄ = 1
n

∑n−1
t=0 X(t). We

mention this eligibility in Section 6.

4. Regression models

We assume{Y(t); t ∈ Z} is a trend model whose meanE[Y(t)] = µ(t) = φ′(t)θ is a time
dependent function. Hereφ(t) = (φ1(t), · · · , φJ(t))′ andθ = (θ1, · · · , θJ)′. Let {X(t); t ∈ Z}
be an another m-dimensional process with mean vectorE[X(t)] = 0, which is possibly
correlated with{Y(t)}. Now we apply the control variate method to estimate the parameter
θ. Let Z(t) ≡ (Y(t),X′(t))′, t ∈ Z. We impose the following assumption.

Assumption 4.1. {Z(t); t ∈ Z} is generated by the following linear process.

Z(t) =

∞∑

j=0

B( j)ε(t − j) +



µ(t)
0
...

0


(4.1)

whereB( j)′sare (m+ 1)× (m+ 1) matrices satisfying Assumption 2.2 andε(t)′sare i.i.d.
random vectors with mean vector0 and covariance matrixK.

For convenience we defineη(t) by
∑∞

j=0 B( j)ε(t − j) = (η(t),X′(t))′, then as discussed
in Section 2., (η(t),X′(t))′ has the spectral density matrix,

f (λ) =

(
fηη(λ) fηX(λ)
fXη(λ) fXX(λ)

)
. (4.2)

Suppose that partial observations{Y(0),Y(1), · · ·Y(n−1)} and{X(−Mn), X(−Mn + 1),· · · ,
X(0),· · · , X(n− 1)} are available.

We define nonparametric estimatorsf̂XX(λ) and f̂Xη̂(λ) for the spectral densitiesfXX(λ)
and fXη(λ), respectively, as

f̂XX(λ) ≡ 2π
n

n−1∑

s=1

Wn(λ − 2πs
n

)IXX(
2πs
n

) (4.3)

f̂Xη̂(λ) ≡ 2π
n

n−1∑

s=1

Wn(λ − 2πs
n

)IXη̂(
2πs
n

) (4.4)
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where

IXX(µ) ≡ 1
2πn
{
n−1∑

t=0

X(t)eitµ}{
n−1∑

t=0

X(t)eitµ}∗ (4.5)

IXη̂(µ) ≡ 1
2πn
{
n−1∑

t=0

X(t)eitµ}{
n−1∑

t=0

η̂(t)eitµ}∗ (4.6)

whereη̂(t) = Y(t) − φ′(t)θ̄LS E and θ̄LS E = (φ′φ)−1φ′Y (the least squares estimator ofθ).
Let Â(λ) = f̂XX(λ)−1 f̂Xη̂(λ) andâ(u) = 1

2π

∫ π

−π Â(λ) exp(iuλ)dλ.
Now we propose an estimatorθ̂C

LS E of θ:

θ̂C
LS E = (φ′φ)−1φ′(Y− ŴM) (4.7)

whereY = (Y(1), · · · ,Y(n))′, φ = (φ(1), · · · , φ(n))′ andŴM = (ŴM(1), · · · , ŴM(n))′ with

ŴM(t) =

Mn∑

u=0

â′(u)X(t − u). (4.8)

To describe asymptotics ofθ̂C
LS E , we impose the following Grenander’s conditions.

Assumption 4.2.Letcn
j,k(h) =

∑n−h
t=1 φ j(t +h)φk(t) =

∑n
t=1−h φ j(t +h)φk(t). cn

j,k(h)’s satisfy
the following conditions.

(i) cn
j, j(0) = O(nγ), j = 1, · · · , J for someγ > 0.

(ii) limn→∞
φ2

j (n+1)

cn
j, j (0) = 0, j = 1, · · · , J.

(iii)

lim
n→∞

cn
j,k(h)

{
cn

j, j(0)cn
k,k(0)

} 1
2

= mjk(h) (4.9)

We may takeφ1(t) = 1 (constant), which evidently satisfies Assumption 4.2, hence,
the regression partφ(t) of {Y(t)}may include a constant.

We define theJ × J matrixmφφ(u) by

mφφ(u) = {mjk(u)}. (4.10)

From Brillinger (2001, p175), there exists anr × r matrix valued functionGφφ(λ), −π <
λ ≤ π, whose entries are of bounded variation, such that

mφφ(u) =

∫ π

−π
exp(iuλ)dGφφ(λ) (4.11)

for u = 0,±1, · · · . Under these assumptions, we obtain the following theorem.
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Theorem 4.1. Suppose Assumptions 2.3, 3.1, 4.1, 4.2, then

lim
n→∞nγE[(θ̂C

LS E− θ)(θ̂C
LS E− θ)′] = 2πmφφ(0)−1

∫ π

−π
fη−V,η−V(λ)dGφφ(λ)mφφ(0)−1, (4.12)

where fη−V,η−V(λ) = fη,η(λ) − fηX(λ) fXX(λ)−1 fXη(λ) is the spectral density ofη(t) − V(t).
HereV(t) =

∑∞
u=0 a′(u)X(t − u), a(u) = 1

2π

∫ π
−π A(λ) exp(iuλ)dλ, A(λ) = fXX(λ)−1 fXη(λ).

Note that the least squares estimatorθ̄LS E of θ has the following asymptotic variance

lim
n→∞nγE[(θ̄LS E− θ)(θ̄LS E− θ)′] = 2πmφφ(0)−1

∫ π

−π
fη,η(λ)dGφφ(λ)mφφ(0)−1, (4.13)

where fη,η(λ) is the spectral density ofη(t). It is seen that

fη−v,η−v(λ) ≡ fη,η(λ) − fηX(λ) fXX(λ)−1 fXη(λ) ≤ fη,η(λ), (4.14)

which implies that the asymptotic covariance matrix ofθ̂C
LS E is smaller than that of̄θLS E.

5. Numerical study

In this section we examine our control variate estimators numerically. By simulation, we
compare the control variate estimators with sample means in Example 5.1 and with the
least squares estimators in Example 5.2. Example 5.3 deals with real financial data. Then
we see how our estimator improves the sample mean and least squares estimator.

Example 5.1. Let us consider the following process of interest{Y(t)} and control process
{X(t)}

Y(t) = u(t) + v(t) (5.1)

X(t) = a1u(t) + 0.4u(t − 1) + a2v(t) (5.2)

wherea1,a2 are constant values. Here{u(t)} and {v(t)} are mutually independent, and
{u(t)}, {v(t)} are i.i.d. N(0,1). Based on 1000 observations for{Y(t)} and {X(t)}, first,
in the setting of (2.1), we evaluate the sample mean square error (SMSE) of the control
variate estimator̂θC and the sample mean̄Y. In what follows we setMn = 20.

In Table 1, we report the SMSE ofθ̂C andȲ for the various values ofa1, a2 by 50
times simulation.

a1 a2 SMSÊθC SMSEȲ SMSEȲ− SMSÊθC

1.0 0.2 0.00047551 0.001357404 0.000881894
0.8 0.4 0.000255565 0.001616194 0.001360629
0.6 0.6 0.000141104 0.001955541 0.001814437
0.4 0.8 0.000000364 0.002562325 0.002561961
0.2 1.0 0.000098874 0.003079185 0.002980311
0.2 2.0 0.000344068 0.001222061 0.000877993

(5.3)
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Table 1: The SMSE of̂θC andȲ

From Table 1, we can see SMSEȲ − SMSÊθC becomes larger when the coefficient
a2 of error processv(t) becomes large, which implies, if control variates are highly cor-
related with the disturbance, thenθ̂C is better than̄Y. However excessive influence of the
disturbance makes the performance of the control variate estimator worse.

Example 5.2. Let us consider the following process of interest{Y(t)} and control process
{X(t)}

Y(t) = µ(t) + u(t) + v(t) (5.4)

X(t) = 0.5u(t) + 0.4u(t − 1) + a1v(t) (5.5)

wherea1 is a constant value,µ(t) = θ′φ(t), φ(t) is a regression function andθ is a vector
valued parameter. Here{u(t)} and {v(t)} are mutually independent, and{u(t)}, {v(t)} are
i.i.d. N(0, 1). The sample sizes ofY(t) andX(t) are 1000, respectively. For these samples
the control variate estimator̂θC

LS E and the least squares estimatorθ̄C
LS E are calculated.

We repeat this procedure 50 times (writei-th control variate estimator and least squares
estimator aŝθ(i)C

LS E and θ̄(i)
LS E) and evaluate SMSEC ≡ 1

50

∑50
i=1 ||θ̂(i)C

LS E− θ||2 and SMSELS E ≡
1
50

∑50
i=1 ||θ̄(i)C

LS E− θ||2 for the regression functionφ(t) = (1, t)′ andφ(t) = (1, cos(π4t))′. The
true value ofθ = (θ1, θ2)′ is assumed to be(1,1)′.

For various values ofa1 we evaluate the SMSEC and SMSELS E for φ(t) = (1, t)′ in
Table 2 and forφ(t) = (1, cos(π4t))′ in Table 3, respectively.

a1 SMSEC SMSELS E SMSELS E− SMSEC

0.3 0.000000264 0.000086314 0.00008605
0.5 0.000008198 0.000595965 0.000587767
0.7 0.000061842 0.005833247 0.005771405

(5.6)

Table 2: SMSEC and SMSELS E (φ(t) = (1, t)′)

a1 SMSEC SMSELS E SMSELS E− SMSEC

0.3 0.000197033 0.003661844 0.003464811
0.5 0.000638327 0.004169522 0.003531195
0.7 0.000059859 0.017065923 0.017006064

(5.7)

Table 3: SMSEC and SMSELS E (φ(t) = (1, cos(π4t))′)
From Tables 2 and 3, SMSEC is smaller than SMSELS E as the coefficienta1 of error

process increases. That is, highly correlated control variates with disturbance makeθ̂C
LS E

better than̄θLS E. The next example deals with real financial data.

Example 5.3. We calculate the control variate estimatorθ̂C and the sample mean̄Y
of NIPPON OIL CORPORATION’s log return of stock price{Y(t)} from 7/19/2007 to
12/12/2007 by setting the difference between Yen-Euro’s exchange rate and its sample
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mean from 7/4/2007 to 12/11/2007 as the control variate process. Then, using the con-
trol variate estimator̂θC and the sample mean̄Y, we forecast NIPPON OIL CORPORA-
TION’s stockS(N) at N=12/13/2007, that is, the estimators forS(N) are calculated by
ŜC(N) ≡ eθ̂C+logS(N−1) andŜ(N) ≡ eȲ+logS(N−1).

The results are given in Table 4.

ŜC(N) Ŝ(N) S(N)

891.0968 891.4768 891
(5.8)

Table 4. (5.9)

From Table 4, the prediction valuêSC(N) is nearer to the true valueS(N) thanŜ(N),
which implies the prediction by the control variate estimator is better than that by the
sample mean.

There are many fields (econometrics, natural sciences, medical sciences etc.) where
we should identify the statistical models for data of interest under the circumstance that
we can use some related variables. In such situations, our estimatorsθ̂C andθ̂C

LS E can be
applied, and are more efficient than the usual estimators.
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