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Abstract

The sample mean is one of the most natural estimators of the population mean
based on independent identically distributed sample. However, if some control vari-
ate is available, it is known that the control variate method reduces the variance of
the sample mean. The control variate method often assumes that the variable of
intersest and the control variable are i.i.d. Here we assume that these variables are
stationary processes with spectral density matrices, i.e.dependent. Then we propose
an estimator of the mean of the stationary process of interest by using control variate
method based on nonparametric spectral estimator. It is shown that this estimator
improves the sample mean in the sense of mean square error. Also this analysis is
extended to the case when the mean dynamics is of the form of regression. Then we
propose a control variate estimator for the regressiofffictents which improves
the least squares estimator (LSE). Numerical studies will be given to see how our
estimator improves the LSE.

JEL classification: C02; C10; C13; C14; C15; C22
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1. Introduction

The sample mean is one of the most natural estimators for the population mean based
on the i.i.d. sample. When some control variable vector is available (a random vector
which is possibly correlated with the variable of interest), using the information about the
control variate vector, it is known that the control variate method reduces the variance of
the sample mean. That is,\fis a sample mean of i.i.d.sam@dN}? ; with an unknown
meanuy and X is a control variable vector with known mean vectoy, then for any
constant vectab, the mean of the control variate estimat@(b) = Y—b’'(X-ux) for uy is

wy and it's variance i¥ar[ Y] -2b'CoV Y, X]+b’ 3.« b, where « is the covariance matrix
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of X andCo\[Y, X] is the covariance vector betwe¥randX. Hence if 2’Co\Y, X] >
b’ > x b, then the variance of the control variate estimator is smaller than that of the sample
mean.

This method has been discussed in the case when the sample and control variable are
i.i.d.. Lavenberg and Welch (1981) reviews analyses of the control variate developed up
to the date. In the paper the valbe of vectorb which minimizes the variance of the
control variate estimator is derived and the confidence interval @.) is constructed.
However in practice, since the correlation betw&eand X is unknown, thish, is not
known and an estimatds, of b, is proposed. In general the control variate estimator
involving the estimatob, is not unbaiased and the confidence interval can not be con-
structed easily. They also discuss these problems. Rubinstein and Markus (1985) extends
the results to the case when the sample méamultidimensional vector and the mul-
tidimensional control variate estimator is represented#@B)™= Y — B(X — Mx), where
B is an arbitary matrix ani is a control variate vector with mean vectds. They give
the matrixB, which minimizes the determinant &f{ay(B) iiy(B)}, which is called the
generalized variance @ {B). They also introduce an estimator Bf of B, and discuss
the confidence ellipsoid. Nelson (1990) proves a central limit theorem of the control vari-
ate estimator. Since a lot of control variate theories have been discussed under a specific
probability structure (usually normal distribution) for the sample and control variates,

a number of authors introduced remedies for violations of these assumptions. Nelson
(1990) gives a systematic analytical evaluation of them. In recent years this method is
applied to financial engineering (e.g., Glasserman (2003), Chan and Wong (2006)).

Since the control variate theory is usually discussed under the assumption that the
sample and control variates are i.i.d, in this paper, when the sample is generated from a
stationary process and some control variable process is available, we propose an estimator
fc of the mean of the concerned process by using control variate method. Then it is shown
that this estimator improves the sample mean in the sense of mean square error (MSE).
The estimatoidc is expressed in terms of nonparametric estimators for spectra of the
concerned process and the control variate process. We also apply this analysis to the
case when the mean dynamics is of the form of regression. A control variate estimator
for the regression cdicients is proposed and is shown to improve the LSE in the sense
of MSE. Numerical studies show how our estimators behave. Our results have potential
application to various fields, including econometrics in particular.

This paper is organized as follows. In Section 2 we introduce an estif@tir
the mean of a stationary process by using control variate method. Section 3 shows this
estimatomc improves the sample mean in the sense of MSE. In Section 4, control variate
estimators for the mean which is of the form of regression are proposed and shown to
improve the LSE. Section 5 provides numerical studies which show how our estimators
improve the sample mean. Proofs of theorems are relegated to Section 6. Throughout the
paper we denote the set of all integersyyand denote bj(-)|| the Euclidean norm of)



2. Setting

One of the most fundamental estimators of the population mean is the sample mean.
It is known that if the sample is i.i.d, and if some control variable is available, using
the information about the control variakeand its meanuy, the control variate method
improves the mean square error of the sample mean. In this section we apply this method
to the case when the sample is generated by a stationary process and some control variate
process is available, and introduce an estimator of the mean, which improves the variance
of the sample mean. Suppose tl¥(t);t € Z} is a scalar-valued process with mean
E[Y(1)] = 6 and{X(t);t € Z} is an another m-dimensional process with the mean vector
E[X(t)] = 0, which is possibly correlated wiffY(t)}. We are now interested in estimation

of 6. LetZ(t) = (Y(t), X'(t))’. The following assumptions are imposed.

Assumption 2.1. {Z(t); t € Z} is generated by the following linear process.

0]

Z(t)= ) B(j)e(t— j)+d (2.1)

j=0

whered = (6,0,0,--- ,0) is m+ 1-dimensional vector an8(j)’sare (m+ 1) x (m+ 1)
matrices ande(t)} is a sequence of i.i.dn + 1-dimensional random vectors with mean
vector0O and covariance matrix.

HenceforthUl, U; ; andv; denote the sum of all the absolute values of elements of
matrix U, the (, j)-th element of the matrixJ and thei-th element of vectoy, respec-
tively.

Assumption 2.2. (i) Def}.]’,B(u)z'] = 0 has no roots in the unit disc
{ze C;l4 < 1}

(i) The cogicient matricesB(u) satisfy
> Bl < oo, (2.2)
u=0

Let Cum(Qq, - -, Qk) be the joint cumulant of random variabl€s,--- , Qx. We
assume the following.

Assumption 2.3.Fork=3,4,---,
Ci = sup |Cumey(0).--- . & (0))] < oo (2.3)
a1, a

and

i (Z CS,- --cgp]zL/u < oo, (2.4)



for zin neighborhood 00, where the inner summation is over all indecomposable parti-
tions (see Brillinger (2001), p20) = (v1,--- , vp) Of the table

1 2
3 4
) . (2.5)
2L-1 2L
with v havingnp > 1elementsp=1,--- ,P.
Write Cumy, ... a(t1, - - - , te1) = CumZy, (t1), - - - » Za_, (tk-1), Z5,(0)} and
Ck= sup Z ICumy,.... o, (t1, -+ L tke1)l. (2.6)
Bty g =—o0
Then Assumptions 2.1, 2.2 and 2.3 imply
DL L+ IGHICUM, . a(ts, - tea)| < o0 2.7)

1 fei=—co

forj=1,--- ,k—=1and anktupleay,--- ,axwhenk=23---,and

i(z cnl-.-cnp]zL/u < o0, (2.8)

L=1\ v

where the summatioly,, is defined as in (2.4) (see, Brillinger (2001), p48). From As-
sumptions 2.1 and 2.2, it is seen that the pro¢2@3} becomes a stationary process with
nonsingular spectral density matrix (e.g., Brillinger (2001)). We write the spectral density
matrix by

_ [ (D) fyx()
@ _( fxy(A)  fxx(2) ) (29)
From Assumption 2.2, it follows tha&(s) = {Cum j(s)} satisfies
> IR < oo, (2.10)
S=—00

(e.g., Brillinger (2001), p.46). Suppose that partial observati@(®), Y(1),---Y(n - 1)}
and {X(=Mp), X(=Mp + 1), ---, X(0),---, X(n — 1)} are available, wher,, = O(n®)
(3<B<3).

Now we are interested in the estimationdoBased on the observations we introduce
the following estimatofc of 6

. 1 n-1 Mn ¥
e =~ ; {Y(t) - UZ:;) A (U)X(t - u)}, (2.11)

4



wheredy(u) = 2 [7 An(d) expua)da, An(a) = fxx(4) fxy(4). Herefxx(1) andfxy(4)
are, respectively, nonparametric estimator$xaf(1) and fxv(4) which are defined as,

n-1

for) = 23 Wi - 212 (212)
s=1
n-1

ox() = 2 (1 - 2102 (213)
s=1

wherelxy(u) andlxx(u) are submatrices of the periodogram

1 n-1 ) n-1 -
In(u) = %{; zmétﬂ}{; Z(t)e") (2.14)
o yv(w)  yx(w)
_( Ixv(e)  Ixx(w) ) (sa). (2.15)

and {Wh(1)} are weight functions which are described in the next section. Alie)

and dn(u) are shown to be consistent estimatorsAgf) = fxx(1) 1 fxy(1), a(u) =

2—171 f_’; A(/lz exp(ul)da, respectively. In the next section we will show that the proposed
estimatoric improves the sample mean in the sense of the mean square error (MSE).

3. Asymptotic theory

In this section we elucidate the asymptoticsdef Initially, we state the following as-
sumption onfW,(1)}.

Assumption 3.1. (i)
Wh(4) = NaW(Nn2) (3.1)

whereN, = O(n%) and positive andV(x) is bounded , even, non-negative and
satisfies

foo W(x)dx = 1. (3.2)

(i) Wh(2) can be expanded a#h(1) = 5 Z|W(NLn)e*“, wherew(x) is a continu-
ous, even function withv(0) = 1, w(x)| < 1and [ w(x)?dx < oo, and satisfies

lim -0 1‘+|(X) = k; < oo for some constark;.

Then we get the following theorem.

Theorem 3.1. Suppose Assumptions 2.1, 2.2, 2.3 and 3.1. Then it holds that

lim NElAc — 62 = 2x(fyy(0) - fyx(0)fxx(0) ™ fxv(0)). (3.3)

N—oo



It is known that the asymptotic variance of the sample méar= 2 X3 Y(t) is
27 fyy(0) (e.g., Brillinger (2001), Theorem 5.2.1). Since

2r(fyv(0) — fyx(0)fxx(0) ™ fxv(0)) < 27 fyv(0), (3.4)
we observe thaic improves\?n in the sense of MSE.

Remark 3.1. If {X(t)} has a known mean vectak, we define the control variate esti-
matorfc = 1 S HY(R) - M & u)(X(t - u) - ux)}. However ifuy is unknown, we use
fc = L X3Y() - D an(u)(X(t - u) - X)) instead ofic, whereX =  $3 X(t). We
mention this eligibility in Section 6.

4. Regression models

We assumgY(t);t € Z} is a trend model whose med&jY(t)] = u(t) = ¢'(t)0 is a time
dependent function. Heet) = (¢1(t), - - - , ¢3(t)) andd = (64, -- ,0;3)". Let{X(t);t € Z}

be an another m-dimensional process with mean vegf(t)] = 0, which is possibly
correlated with{Y(t)}. Now we apply the control variate method to estimate the parameter
0. LetZ(t) = (Y(t), X'(t))’, t € Z. We impose the following assumption.

Assumption 4.1.{Z(t); t € Z} is generated by the following linear process.
wu(t)
> o : 0
Z(t)= ) B(e(t—j)+| . (4.1)
j=0 :
0

whereB(j)’ sare (m+ 1) x (m+ 1) matrices satisfying Assumption 2.2 a4{t)’ sare i.i.d.
random vectors with mean vectdrand covariance matriX.

For convenience we defingt) by Z‘J?‘;O B(j)e(t - }) = (n(t), X'(t))’, then as discussed
in Section 2., 4(t), X'(t))’ has the spectral density matrix,

() ()
f) ‘( fo() FexD) ) “-2)

Suppose that partial observatidi¥g0), Y(1), - - - Y(n— 1)} and{X(—Mp), X(—=Mp + 1), - -,
X(0), -, X(n - 1)} are available.

We define nonparametric estimatds(1) andex;](/l) for the spectral densitiefxx(1)
and fx, (1), respectively, as

n-1

fox() = 2 3 (1 - 2810 %) @3)
s=1
n-1

) = 25 Wa(a - 2912 (4.9
s=1



where

n-1 n-1

Ixx() = 51 XY X0 45)
t=0
n-1

110 = 5 X(t)étﬂ}{z i) (46)
t=0

wherenflt) = Y(t) - ¢/ (D6LsE and5LSE = (¢'¢)"1¢'Y (the least squares estimatore)f
Let AQY) = fx() " fis(1) andalu) = & [* A1) expua)da.
Now we propose an estimatéff . of :
Orse= (6'¢)"¢'(Y — W) (4.7)

whereY = (Y(1).---, Y(N))', ¢ = ($(1).-- . ¢())’ andWy = (Win(1).- - , Win(n))’ with
Mn

Win(t) = > & (U)X(t-u). (4.8)
u=0

To describe asymptotics é’fSE , we impose the following Grenander’s conditions.

Assumption 4.2. Letcik(h) = Z{‘:‘lh Pi(t+h)pi(t) = Xy, ¢j(t+h)gi(t). cg"k(h)’s satisfy
the following conditions.

() CT,,'(O) =0o(m),j=1,---,Jfor somey > 0.

¢ (n+1) .
(@ii) limp_e - T - =0,j=1,---,J.

(i)
lim _ o = my(h) (4.9)
e {e?,(0)cp, (0))

1
2

We may takepi(t) = 1 (constant), which evidently satisfies Assumption 4.2, hence,
the regression padt(t) of {Y(t)} may include a constant.
We define thel x J matrix my,(u) by

My (U) = {Mik(u)}. (4.10)

From Brillinger (2001, p175), there exists ax r matrix valued functiorGy4(1), - <
A <, whose entries are of bounded variation, such that

My (U) = [ " exp(ul)dGgs(1) (4.12)

foru=0,+1,---. Under these assumptions, we obtain the following theorem.



Theorem 4.1. Suppose Assumptions 2.3, 3.1, 4.1, 4.2, then
lim WE[(@Fse - 0)(@s e~ 0)] = 2rmys(0) f fy-vinv()dGs ()M (0) 2, (4.12)

wheref,_v,-v(4d) = f,,(2) — f,x(2) fxx(2) L fx,(2) is the spectral density af(t) — V(t).
HereV(t) = T a (UX(t - u), au) = 2 [* A(1) expud)dd, A1) = fxx(D) ™ x,(A).

Note that the least squares estimagaye of 6 has the following asymptotic variance

lim E[(fLse~6)(bLse— 6)] = 2y (0)™ f fra(DdGs()Mes(0) ™, (4.13)
wheref, (1) is the spectral density oft). It is seen that

Frvirvl() = Frp(2) = Fix(Q) ixx () () < (), (4.14)

which implies that the asymptotic covariance matri>é‘|§gE is smaller than that of, s e.

5. Numerical study

In this section we examine our control variate estimators numerically. By simulation, we
compare the control variate estimators with sample means in Example 5.1 and with the
least squares estimators in Example 5.2. Example 5.3 deals with real financial data. Then
we see how our estimator improves the sample mean and least squares estimator.

Example 5.1. Let us consider the following process of intefe4t)} and control process
{X(®)}

Y(t) = u(t) + v(t)
X(t) = aqu(t) + 0.4u(t — 1) + axv(t)

(5.1)
(5.2)

whereay, a; are constant values. Herai(t)} and {v(t)} are mutually independent, and
{u(®)}, {v(t)} are i.i.d. N(0,1). Based on 1000 observations for(t)} and {X(t)}, first,

in the setting of (2.1), we evaluate the sample mean square error (SMSE) of the control
variate estimatofc and the sample mean In what follows we sevl,, = 20.

In Table 1, we report the SMSE ot andY for the various values ady, ap by 50
times simulation.

[ a || SMSH SMSEY [ SMSEY - SMSH |

10 021 0.00047551 M01357404  0.000881894

0.8 04 | 0000255565 (01616194  0.001360629

0.6 06 | 0.000141104 01955541  0.001814437 (5.3)
0.4 08| 0.000000364 02562325  0.002561961

0.2 10 | 0.000098874 03079185  0.002980311

0.2 20 | 0.000344068 01222061  0.000877993




Table 1: The SMSE dfc andY

From Table 1, we can see SMSE SMSE@C becomes larger when the dheient
a of error process(t) becomes large, which implies, if control variates are highly cor-
related with the disturbance, thé@ is better tharY. However excessive influence of the
disturbance makes the performance of the control variate estimator worse.

Example 5.2. Let us consider the following process of intefe4t)} and control process
{X(0)}

Y(t) = u(t) + u(t) + v(t) (5.4)
X(t) = 0.5u(t) + 0.4u(t — 1) + agv(t) (5.5)

wherea; is a constant valugy(t) = 8 ¢(t), ¢(t) is a regression function anglis a vector
valued parameter. Hergu(t)} and {v(t)} are mutually independent, arid(t)}, {v(t)} are
i.i.d. N(O, 1). The sample sizes ¥{t) and X(t) are 1000, respectively. For these samples
the control variate estimato@ESE and the least squares estimaﬁﬁSE are calculated.
We repeat this procedure 50 times (wriitth control variate estimator and least squares

estimator 'asﬁfzsCE andél(_i)S g and evaluate SM&E= & 3% ||§E)SCE— 6)|2 and SMSEsg =
5—102i5:°1||§|(_'§E— 6112 for the regression functio(t) = (1,t)’ and¢(t) = (1, cog%t))’. The

true value o® = (01, 62)" is assumed to bg, 1)

For various values ofy we evaluate the SMSEand SMSEsEg for ¢(t) = (1, t) in
Table 2 and fop(t) = (1, cog7t))’ in Table 3, respectively.

[as [ SMSEE  SMSEse | SMSEse- SMSE: |

0.3 [ 0.000000264 ®00086314  0.00008605 (5.6)
0.5 | 0.000008198 M00595965  0.000587767 '
0.7 | 0.000061842 M05833247  0.005771405

Table 2: SMSE and SMSEsEe (4(t) = (1.t))
a1 || SMSE SMSEse | SMSEse- SMSE: |
0.3 0.000197033 M03661844  0.003464811 (5.7)

0.5 | 0.000638327 M04169522 0.003531195
0.7 || 0.000059859 M17065923 0.017006064

Table 3: SMSE and SMSEsE (#(t) = (1,cog51))")

From Tables 2 and 3, SMSHs smaller than SMSEs g as the cofficienta; of error
process increases. That is, highly correlated control variates with disturbancé&ggke
better thard_se. The next example deals with real financial data.

Example 5.3. We calculate the control variate estimatés and the sample meai
of NIPPON OIL CORPORATION's log return of stock priggt)} from 7192007 to
12/12/2007 by setting the (ference between Yen-Euro’s exchange rate and its sample



mean from A/2007 to 12112007 as the control variate process. Then, using the con-
trol variate estimatoc and the sample mean, we forecast NIPPON OIL CORPORA-
TION's stockS(N) at N=12132007, that is, the estimators f&(N) are calculated by
éC(N) = g/c+0gS(N-1) 5 é(N) = gY+logS(N-1)

The results are given in Table 4.

L S°(N)  S(N)  S(N) |
8910968 8914768 891 |
Table 4. (5.9)

(5.8)

From Table 4, the prediction val&F (N) is nearer to the true valu®N) thanS(N),
which implies the prediction by the control variate estimator is better than that by the
sample mean.

There are many fields (econometrics, natural sciences, medical sciences etc.) where
we should identify the statistical models for data of interest under the circumstance that
we can use some related variables. In such situations, our estirdatansldC; - can be
applied, and are mordtient than the usual estimators.
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