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A new interpretation of empirical likelihood for time series models

and its application to model selection testing

Naoya Sueishi

Kyoto University

Abstract

The empirical likelihood estimator loses its interpretation as a nonparametric maximum

likelihood estimator when it is applied to time series. This paper gives a new information

-theoretic interpretation of empirical likelihood for time series models specified via moment

restrictions. We show that the empirical likelihood estimator of Kitamura (1997, Annals of

Statistics) minimizes the Kullback-Leibler information criterion of the joint distribution from

the model to the true data generating process. As an application, we also propose a Vuong-type

test for comparing possibly misspecified dynamic models.

1 Model

Let {Yt}Tt=1 denote observations of a finite-dimensional stationary and strong mixing process

{Yt}∞t=1 that is on a probability space (Ω,F , µ), where Ω = Rdy∞ =
∏∞

t=1 Rdy and F =

B(Rdy∞). We consider the model

E[m(Yt; θ0)] =

∫

Ω
m(yt; θ0)dµ = 0, (t = 1, 2, · · · )

where yt ∈ Rdy is the t-th coordinate of Rdy∞.

Kitamura (1997) proposes an efficient estimator of θ0 on the basis of the empirical likeli-

hood. However, an interpretation of his estimator is rather unclear. This study gives a new

information-theoretic interpretation to the Kitamura’s (1997) estimator.

2 KLIC minimization problem

The Kullbuck-Leibler information criterion (KLIC) defines a pseudo-distance between the

model and the true DGP. Let MB be the joint probabilities on (RdyB ,BdyB). We define

PB
θ = {PB ∈ MB :

∫
m(yt; θ)dPB = 0, t = 1, 2, . . . , B} and PB = ∪θ∈ΘPB

θ . PB is a set of

joint probabilities that are compatible with the moment restriction.

Let µB be the true joint probability that is induced from µ. The KLIC from PB to µB is

DB(µB‖PB) = min
PB∈PB

DB(µB‖PB),
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where

DB(µB‖PB) =





−
∫
log

(
dPB
dµB

)
dµB if PB # µB

∞ otherwise.

After some manipulation, we obtain

DB(µB‖PB) = min
θ∈Θ

max
λ∈Λ

∫
log

(
1 + λ′

B∑

i=1

m(yi; θ)

)
dµB .

The sample analogue of the saddle point problem is

min
θ∈Θ

max
λ∈Λ

1

T −B + 1

T−B+1∑

t=1

log

(
1 + λ′

B−1∑

i=0

m(Yt+i; θ)

)
.

The resulting estimator is the same as the blockwise EL estimator of Kitamura (1997). Thus,

we can obtain the blockwise EL estimator as the solution to the KLIC minimization problem.

3 Application to model selection test

Suppose that there are two competing dynamic models that are specified by moment restric-

tions: E[m(1)(Yt; θ
(1)
0 )] = 0 and E[m(2)(Yt; θ

2)
0 )] = 0. Both models are misspecified. We

propose an empirical likelihood-based model selection test. Our test is similar to that of Kita-

mura (2001). Let P(j)
B = ∪θ∈Θ{PB ∈ MB :

∫
m(j)(yt; θ)dPB = 0, t = 1, 2, . . . B} for j = 1, 2.

We test the null hypothesis:

DB(µB‖P(1)
B ) = DB(µB‖P(2)

B )

for some B.

Our test is based on the sample analog of the difference of two KLICs:

D̂B(µB‖P(1)
B )− D̂B(µB‖P(2)

B )

where

D̂B(µB‖P(j)
B ) =

1

T −B + 1

T−B+1∑

t=1

log

(
1 + λ̂(j)

B
′
B−1∑

i=0

m(j)(Yt+i; θ̂
(j)
B )

)
.

Under the null hypothesis, the test statistic converges in distribution to a normal distribution.

2
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Asymptotic Inference for Dynamic Panel Estimators of Infinite
Order Autoregressive Processes

Yoon-Jin Lee∗, Ryo Okui† and Mototsugu Shintani‡

An abstract prepared for the KAKENHI symposiumu at Otaru University of Commerce
in September 2013

In this paper we consider the estimation of a dynamic panel autoregressive (AR) process
of possibly infinite order in the presence of individual effects. We utilize the sieve AR ap-
proximation with its lag order increasing with the sample size. We establish the consistency
and asymptotic normality of the standard dynamic panel data estimators, including the fixed
effects estimator, the generalized methods of moments estimator and Hayakawa’s instrumental
variables estimator, using double asymptotics under which both the cross-sectional sample size
(N) and the length of time series (T ) tend to infinity. We also propose a bias-corrected fixed
effects estimator based on the asymptotic result. Monte Carlo simulations demonstrate that
the estimators perform well and the asymptotic approximation is useful. As an illustration,
proposed methods are applied to dynamic panel estimation of the law of one price deviations
among US cities.

Because economic relationships are often dynamic in nature, dynamic panel models have
been considered very useful in the analysis of micro economic data. Many estimation methods
for simple dynamic panel models have been proposed, and their theoretical properties are in-
vestigated in many studies under a fixed T and large N asymptotic framework. More recently,
however, an increasing number of panel data with longer T have become available in prac-
tice. Motivated by the availability of longer panel data, Hahn and Kuersteiner (2002), Alvarez
and Arellano (2003) and Hayakawa (2009), among others, have investigated asymptotic prop-
erties of various estimators for “finite order” panel AR models, using an alternative asymptotic
approximation when both T and N tend to infinity.

In this paper, we consider the estimation of a general dynamic panel structure in the presence
of unobserved individual effects. To this end, we employ a sieve approach to approximate a
panel AR model of infinite order by a panel AR model of order p that increases with sample
size T and N . Our specification of infinite order AR models covers a very general class of
stationary linear processes, which nests standard autoregressive and moving average (ARMA)
models of finite order. Therefore, compared to previous studies in the dynamic panel literature,
estimation results from our approach are less subject to problems caused by possible model
misspecifications. Such an idea of the AR sieve approximation in estimating a general linear
model has long been used in the literature of time series analysis. However, a näıve analogy of
time series results cannot be directly used, due to several technical issues specific to dynamic
panel data analysis under a large T and large N asymptotic framework.

The AR sieve approximation retains the computational simplicity of the finite order AR
models, which can be conveniently estimated by a linear regression estimator. In particular,

∗Department of Economics, Indiana University, Bloomington, IN 47405-7104, USA. Email:
lee243@indiana.edu

†Institute of Economic Research, Kyoto University, Yoshida-Hommachi, Sakyo, Kyoto, Kyoto, 606-8501,
Japan. Email: okui@kier.kyoto-u.ac.jp

‡Department of Economics, Vanderbilt University, Box 1819 Station B, Nashville, TN 37235, USA. Email:
mototsugu.shintani@vanderbilt.edu.
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we consider sieve variants of (i) the fixed effects estimator (Hahn and Kuersteiner, 2002), (ii)
the generalized methods of moments (GMM) estimator (Holtz-Eakin, Newey and Rosen, 1988,
Arellano and Bond, 1991, and Alvarez and Arellano, 2003) and (iii) an efficient instrumental
variables (IV) estimator (Hayakawa, 2009). We show the consistency and asymptotic normality
of each estimator. We further construct consistent standard errors for all the estimators and an
asymptotically valid automatic lag selection procedure in AR sieve approximation.

Our main theoretical results can be summarized as follows. First, when T is only moder-
ately large, a fixed effects estimator suffers from asymptotic bias. We show that a simple bias
correction method, which is analogous to the standard case, works well for the infinite-order
AR model. Second, since the number of lags increases with T , the GMM estimator involves
many moment conditions even when T is moderately large. Compared to the standard case,
N must be much larger relative to T in order for the GMM estimator to behave well without
suffering from many moments bias. Third, Hayakawa’s IV estimator is shown to be consistent
and asymptotically normal under a condition on the relative magnitude of N and T that is
weaker than those required for the other estimators. Overall, our theoretical results suggest
that the choice among estimators should be based on the relative magnitude of N and T and
their finite sample properties.

Our Monte Carlo simulation to evaluate the finite sample properties provides useful guidance
for practitioners in choosing among the estimators. Our proposed bias-corrected estimator works
well in reducing the bias of the fixed effects estimator without inflating the dispersion of the
estimator. When N becomes larger, however, the GMM estimator has a smaller bias than the
bias-corrected fixed effects estimator. The bias of the fixed effects estimator is not negligible
even when T is fairly large, which illustrates the importance of bias correction. Among all the
estimators, Hayakawa’s IV estimator has the smallest bias at the cost of larger dispersion. An
automatic lag selection procedure also helps to choose the approximation models that produces
precise estimates.

Finally, as an empirical illustration, proposed methods are applied to dynamic panel esti-
mation of the law of one price (LOP) deviations among US cities. The speed of individual
good price adjustment is evaluated by the estimated sum of AR coefficients using competing
estimators. We find that both the fixed effects and the GMM estimator often provide values
less than the bias-corrected fixed effects estimator and Hayakawa’s IV estimator.

Key Words: Bias correction; Double asymptotic; Fixed effects estimator; GMM; Infinite order
autoregressive process; Instrumental variables estimator.

JEL Classification: C13; C23; C26.
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Summary

Finite mixture models provide flexible ways to account for unobserved population heterogeneity.

Because of their flexibility, finite mixture models have seen numerous applications in diverse fields

such as biological, physical, and social sciences.

This paper considers likelihood-based testing of the null hypothesis of m0 components against

the alternative of m0 + 1 components in a finite mixture model. The number of components is an

important parameter in finite mixture models. In economics applications, the number of compo-

nents often represents the number of unobservable types or abilities. In many other applications,

the number of components signifies the number of clusters or latent classes in the data.

Testing the number of components in finite mixture models has been a long-standing challeng-

ing problem because of its non-regularity. When testing the null of m0 components against the

alternative of m0 + 1 components, the true m0-component density can be described with many

elements of the parameter space in the (m0 + 1)-component alternative model. These elements

are characterized by the union of the two parameter subsets: A, where two components have the

same mixing parameter that takes component-specific values; and B, where one of the components

has zero mixing proportion. In both null parameter sets, the regularity conditions for a standard

asymptotic analysis fail because of such problems as parameter non-identification, singular Fisher

information matrix, and true parameter being on the parameter space boundary. When the pa-

rameter space is compact, the asymptotic distribution of the likelihood ratio test (LRT) statistic

has been derived as a supremum of the square of a Gaussian process indexed by the closure of

the convex cone of directional score functions; however, it is difficult to implement these symbolic

results.

This paper makes three main contributions. First, we develop a framework that facilitates the

analysis of the likelihood function of finite mixture models. In the null parameter space A discussed

above, the standard quadratic expansion of the log-likelihood function is not applicable because of

the singular Fisher information matrix. The existing works handle this problem by resorting to

1



non-standard approaches and tedious manipulations. We develop an orthogonal parameterization

that extracts the direction in which the Fisher information matrix is singular. Under this repa-

rameterization, the log-likelihood function is locally approximated by a quadratic form of squares

and cross-products of the reparameterized parameters, leading to a simple characterization of the

asymptotic distribution of the LRT statistic.

Second, we derive the asymptotic distribution of the LRT statistic for testing the null hypoth-

esis of m0 components for a general m0 ≥ 1 in a mixture model with a multidimensional mixing

parameter and a structural parameter. Under the null parameter set A, the asymptotic distri-

bution is shown to be the maximum of m0 random variables, each of which is a projection of a

Gaussian random vector on a cone. Both the LRT statistic under the null parameter set B and the

(unrestricted) LRT statistic are shown to converge in distribution to the maximum of m0 random

variables, each of which is the supremum of the square of a Gaussian process over the support of

the mixing parameter. In contrast to the existing symbolic results, the covariance structure of the

Gaussian processes is explicitly presented.

Implementing the LRT has, however, practical difficulties: (i) in some mixture models that

are popular in applications (e.g., Weibull duration models), the Fisher information for the null

parameter space B is not finite; (ii) the asymptotic distribution depends on the choice of the support

of the parameter space, and (iii) simulating the supremum of a Gaussian process is computationally

challenging unless the dimension of the parameter space is small.

As our third contribution, building on the EM approach pioneered by Li et al. (2009) and

Li and Chen (2010), we develop a likelihood-based testing procedure of the null hypothesis of

m0 components against the alternative of m0 + 1 components that circumvents these difficulties

associated with the null parameter space B. The proposed modified EM test statistic has the

same asymptotic distribution as the LRT statistic for testing the null parameter space A, and its

asymptotic distribution can be simulated without facing the curse of dimensionality. Furthermore,

the modified EM test is implementable even if the Fisher information for the null parameter space

B is not finite. Simulations show that the modified EM test has good finite sample size and power

properties.
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In recent years, massive high-throughput and high-dimensional datasets are generated
as a result of technological advancement in many fields. Such data are featured by the
large number of variables p as compared with the sample size n. Usually, it is assumed
that there are only a few important variables that contribute to the response. Variable
selection is a natural tool to discover the important variables. We refer to Fan and Lv
(2010) for an overview of variable selection in high-dimensional feature space.

The first attempt to variable selection was the !0 type regularization methods, including
AIC (Akaike, 1973), Cp (Mallows, 1973) and BIC (Schwarz, 1978), which work well in low
dimensional cases, while computationally prohibitive in high-dimensional settings. As a
result, numerous efforts have been made to modify the !0 type regularization to reduce the
computational burden. Among them, Tibshirani (1996) proposed LASSO, which is the !1
penalty, or equivalently, Chen and Donoho (1994) proposed Basis Pursuit. Also, folded-
concave penalties such as SCAD (Fan and Li, 2001) and MCP (Zhang, 2010) have been
proposed and widely used over the years. All of these variable selection procedures were
shown to have good theoretical results. For LASSO, prediction and selection performances
were studied in Greenshtein and Ritov (2004), Meinshausen and Bühlmann (2006), Zhao
and Yu (2006), Bunea et al. (2007), Zhang and Huang (2008), Meinshausen and Yu (2009),
Bickel et al. (2009), Zhang (2010), among others. For folded-concave penalties, such as
SCAD and MCP, their theoretical properties were studied in Fan and Li (2001), Fan and
Lv (2011), Zhang (2010) and Feng et al. (2013).

It is very desirable to develop efficient algorithms for calculating the solution path of the
coefficient vector as the tuning parameter varies. For LASSO, least angle regression (LARS)
(Efron et al., 2004), or homotopy (Osborne et al., 2000) is an efficient method for computing
the entire path of LASSO solutions in the linear regression case. For folded-concave penal-
ties including SCAD and MCP, Fan and Li (2001) used the Local Quadratic Approximation
(LQA); Zou and Li (2008) proposed the Local Linear Approximation (LLA), which makes
a local linear approximation to the penalty, thereby yielding an objective function that can
be optimized by using the LARS algorithm; Zhang (2010) proposed the penalized linear
unbiased selection algorithm (PLUS), which is designed for linear regression penalized by
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quadratic spline penalties, including LASSO, SCAD and MCP. Recently, coordinate de-
scent methods have received a majority of attention in high-dimensional setting, including
Fu (1998), Shevade and Keerthi (2003), Krishnapuram et al. (2005), Genkin et al. (2007),
Friedman et al. (2007), Wu and Lange (2008), among others. Other work on penalized
linear regression includes Hastie et al. (2004), Daubechies et al. (2004), Kim et al. (2007),
Yu and Feng (2012), among others.

In all the existing algorithms for calculating the solution path for penalized estimators,
there is a tuning parameter which controls the penalty level. As it turns out, selecting the
optimal tuning parameter is both important and difficult. There has been an abundance
of research on using certain kind of information criteria to select the tuning parameter.
Tibshirani (1996) used generalized cross-validation (GCV) style statistics, Efron et al.
(2004) used Cp style statistics. Zou et al. (2007) derived a consistent estimator of degrees
of freedom of the LASSO in the Cp, AIC, and BIC criteria. But from simulation experience,
all these traditional methods when applied to the LASSO, tend to over select. Chen and
Chen (2008) proposed extended-BIC, by adding an extra term with respect to p into
the criterion function. Zhang et al. (2010) proposed the generalized information criterion
(GIC), which makes a connection between the classical variable selection criteria and the
regularization parameter selection for the nonconcave penalized likelihood approaches.

Besides the many information-type criteria, another popular method for selecting the
tuning parameter is cross-validation, which is a data-driven method. Shao (1993) gave
rigorous proof of the inconsistency of CV(1) for the classical linear regression model,
meanwhile he gave the proper size of construction and validation sets in leave-nv -out cross-
validation (CV(nv)), under which cross-validation achieves the model selection consistency.
Here, by construction and validation datasets we mean the subsets of the complete dataset
used to construct and validate the estimators in cross-validation splits. Zhang (1993) stud-
ied multifold cross-validation and r-fold cross-validation in classic linear regression models.

To calculate the solution path for high-dimensional variable selection methods, there
are several packages available in R, including lars (Efron et al., 2004), glmnet (Friedman
et al., 2007), glmpath (Park and Hastie, 2007), plus(Zhang, 2010), ncvreg (Breheny and
Huang, 2011), apple (Yu and Feng, 2012), among others. In all these packages, the default
tuning parameter selection method is K-fold cross-validation. Nevertheless, researchers
have realized that the K-fold cross-validation in high-dimensional settings tends to be too
conservative in the sense that it will select plenty of noise variables. As mentioned in Zhang
and Huang (2008), the theoretical justification of cross-validation based tuning parameter
is unclear for model-selection purposes.

The contribution of the paper is two-fold. (1) A thorough investigation is conducted
for the advantages and drawbacks of the commonly used cross-validation methods for
tuning parameter selection in the penalized estimation methods. (2) A new cross-validation
method is proposed, which is shown to be model selection consistent for a wide range of
penalty functions under the generalized linear model framework.
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Extended abstract

The majority of applied econometric papers concentrates on the fit of the models and the
statistical significance of the coefficients. Sensitivity analysis is often not or only tangen-
tially reported. This is unfortunate, because sensitivity analysis is at least as important
as diagnostic testing. While diagnostic testing attempts to answer the question: is it true
(for example, that a coefficient is zero), sensitivity analysis addresses the question: does
it matter (that we set the coefficient to zero). At first glance, the two questions seem to
be closely related. But Magnus & Vasnev (2007) showed that this is not the case. In fact,
the two concepts are essentially orthogonal.

Magnus & Vasnev (2007) introduced local sensitivity through a Taylor expansion. If
the variable (or parameter) of interest, say y, depends on a nuisance parameter, say θ, then
ŷ(θ) denotes the estimator of y for each given value of θ. Special cases are the ‘restricted’
estimator ŷ(0) obtained by setting θ = 0, and the ‘unrestricted’ estimator ŷ(θ̂) obtained
by setting θ equal to its estimated value θ̂. The function ŷ(θ) provides not only these two
special cases, but the whole sensitivity curve, given by the estimates of y for each given
value of θ.

The first-order Taylor expansion of the sensitivity curve at the restricted point is given
by

ŷ(θ) = ŷ(0) + S θ +O(θ2), (1)
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where

S =
∂ŷ(θ)

∂θ

∣

∣

∣

∣

θ=0

(2)

is the first derivative at the restricted point θ = 0, and is called the local sensitivity statistic
or simply the sensitivity.

Sensitivity is computed for maximum likelihood estimators in Magnus & Vasnev (2007)
and, in general, it can be expressed in terms of the Hessian. For the cases of mean, variance,
and distribution misspecification the sensitivity statistics allow tractable representations.
This is particularly the case for the Bs and Ds statistics of Banerjee & Magnus (1999) and
the sensitivity of GLS estimators in panel data derived by Vasnev (2010).

Magnus & Vasnev (2007) provide an overview of the sensitivity literature, and prove
formally the asymptotic independence of the commonly-used diagnostic tests and the sen-
sitivity statistic. Diagnostic tests and sensitivity statistics are therefore complementary,
and both require our attention when analyzing a model. It is possible to derive sensitivity
statistics, and several papers have suggested local or global sensitivity measures. It is,
however, more difficult to answer the question when a sensitivity statistic is large or small.
This question is addressed in the current paper. The paper gives practical recommenda-
tions with regards to how sensitivity statistics can be used. We shall see that the use of
sensitivity is context-dependent, as also emphasized by Severini (1996), so that we need to
consider sensitivity in relation to the problem under consideration.

In some situations the value of the sensitivity statistic is important, requiring a thresh-
old in order to decide whether the model is sensitive or not. We call this case ‘absolute
sensitivity’. In other situations only the relative magnitude is important. We call this
case ‘relative sensitivity’. Essential for both cases is the realization that sensitivity (unlike
a diagnostic test) is context-dependent, and will be closely related to the estimator we
analyze or the dependent variable we are modeling. To bring out this dependence, we
illustrate all concepts introduced in this paper in a specific context, namely forecasting
the Euro yield curve. In this context it is natural to consider the sensitivity to autocorre-
lation and normality assumptions. Different forecasting models are combined with equal,
fit-based and sensitivity-based weights, and compared with the multivariate and random
walk benchmarks.

The main purpose of combining forecasts is to improve forecast accuracy (Bates &
Granger, 1969). The choice of weights, however, is still an open question. Timmermann
(2006) provides a thorough overview of the sizeable forecast combination literature, but in
practice the optimal weights have to be estimated and this affects their actual performance.
The adaptive weights seem to work well in many situations, but sometimes a simple alter-
native with equal weights gives better results as shown by Stock & Watson (2004). This
fact is explained by Winkler & Clemen (1992) as instability of estimated weights used in
generating the combined forecast. We show that when several forecasts are available, the
weights based on relative sensitivity perform well and are complementary to the fit-based
weights. For long-term maturities the sensitivity-based weights perform better than other
weights.
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Abstract

This paper explores the Taiwan stock market’s intertemporal relation between

risks and expected returns in the context of the Intertemporal Capital Asset Pricing

Model. Our panel data models primarily rely on the time-varying conditional covari-

ances among the return of Taiwan 50 Index (market portfolio), each corresponding

component stock return, and the state variables including VIX, term spread, and

funding liquidity spread. Specifically, the following two-stage econometric procedure

is implemented: we first estimate the time-varying conditional covariances by dynamic

conditional correlations models, and then treat the estimates as explanatory variables

in the second-stage panel quantile regression (PQR) methods to explore the shape of

conditional distribution of excess returns. The risk coefficients estimated via PQR

are positive over the upper right tail of the conditional distribution of excess returns;

the estimation results signify negative risk coefficients over the lower left tail of con-

ditional distribution of excess returns. No significant intertemporal relation between

risk and return is identified over the neighborhood of conditional median of excess

returns. Robustness checks indicate that our empirical results are robust to the choice

of proxies of risk, explanatory variables, and econometric methodologies.

JEL classification: G12, C32, C33

Keywords: Intertemporal relation between risk and expected return; Intertemporal

Capital Asset Pricing Model; Dynamic Conditional Correlations; Panel Quantile Re-

gression.
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ଟݩ࣍ඇਖ਼ྻܥ࣌نϞσϧͷ൑ผղੳʹର͢Δ

໬౓Ξϓϩʔνݧܦ

໌ੴɹҮ࠸

ʢૣҴాେֶ େֶӃ Պʣڀݚֶ޻ཧװج

2013೥ 9݄ 7೔

1 Ϟσϧʹର͢Δ൑ผղੳྻܥ࣌

ຊใࠂͰ͸ɺྻܥ࣌Ϟσϧͷ൑ผղੳʹରͯ͠ɺݧܦ໬౓๏Λ༻͍ͨ৽ͨͳΞϓϩʔνΛఏҊ

͠ɺैདྷͷ൑ผղੳʹର͢Δվળ఺Λใ͢ࠂΔɻ

͋ΔϕΫτϧ஋؍ଌྻܥX = (X(1)′, · · · ,X(n)′)′͕ಘΒΕͨࡍʹɺ͜ͷ؍ଌ͕ྻܥෳ਺ͷΧ

ςΰϦʔΠ1, · · · ,ΠJ ͷ͏ͪͷͲΕ͔ 1ͭʹଐ͢Δ͜ͱ͚͕ͩ෼͔͍ͬͯΔͱ͢Δɻ൑ผղੳͰ͸ɺ

X ͕ଐ͢Δਖ਼͍͠ΧςΰϦʔΛΑΓ͍֬ߴ཰Ͱݟग़͢͜ͱΛ໨తͱ͢ΔɻҰൠతʹྻܥ࣌෼໺ʹ

͓͚Δ൑ผղੳͰ͸ɺσʔλͷଐ͢ΔΧςΰϦʔ͸ྻܥ࣌ϞσϧͷεϖΫτϧີ౓ྻߦͰඇ฼਺

తʹنఆ͞ΕΔɻ۩ମతͳઃఆͱͯ͠ɺ௕͞ nͷ sྻܥ࣌ݩ࣍σʔλX = (X(1)′, · · · ,X(n)′)′

͕ಘΒΕͨࡍʹɺX ͕ҎԼͷΑ͏ͳ s× sεϖΫτϧີ౓ྻߦͰهड़͞ΕΔ 2ͭͷΧςΰϦʔ

Π1 : g1(ω) Π2 : g2(ω) (1)

ͷͲͪΒ͔Βੜ੒͞Ε͔ͨΛ൑ผ͢Δ໰୊Λ͑ߟΔɻ͜ͷܗͷ൑ผ໰୊ʹରͯ͠ɺZhang and

Taniguchi [1]͸ɺ2࣍ఆৗͳଟݩ࣍ඇਖ਼نઢܗաఔ͔Βੜ੒͞ΕͨσʔλX = (X(1)′, · · · ,X(n)′)′

ʹରͯ͠ɺWhittle໬౓ൺܕͷ൑ผ౷ྔܭ

I(g1 : g2) :=
1

4π

∫ π

−π

[
log

det g2(ω)

det g1(ω)
+ tr

[
In,X(ω)

{
g2(ω)

−1 − g1(ω)
−1

}]]
dω

ΛఏҊͨ͠ɻ͜͜ͰɺIn,X(ω) ͸؍ଌྻܥʹର͢ΔϐϦΦυάϥϜྻߦͰ͋Δɻ

൑ผ౷ྔܭͷྑ͞ΛධՁ͢Δࡍʹ͸ɺޡ൑ผ֬཰ Pr(2|1)ΛධՁ͢Δͷ͕ࣗવͰ͋Δͱ͑ߟΒ
ΕΔɻ͜͜ͰɺPr(2|1)͸ɺ؍ଌྻܥ͸ຊདྷΧςΰϦʔΠ1ʹଐ͢Δʹ΋͔͔ΘΒͣɺΠ2ʹଐͯ͠

͍Δͱͯͬޡ൑ผ͞Εͯ͠·͏֬཰Ͱ͋ΔɻZhang and Taniguchi [1] ͸ɺ൑ผ໰୊ (1)ͷ΋ͱͰ

Pr(2|1)ɺPr(1|2)͕઴ۙతʹ 0ʹऩଋ͢Δ͜ͱΛࣔͨ͠ɻ͜ͷ͜ͱ͸ɺ൑ผ౷ྔܭ I(g1 : g2)͕ج

ຊతͳʮྑ͞ʯΛ͍ͯͬ࣋Δ͜ͱΛҙຯ͍ͯ͠Δɻ·ͨɺΧςΰϦʔΛهड़͢ΔεϖΫτϧ͕฼

਺తʹۙ઀͍ͯ͠Δ৔߹ʹ͓͍ͯޡ൑ผ֬཰Λಋग़͢Δ͜ͱʹΑΓɺ൑ผ౷ྔܭͷඍົͳྑ͞Λ

ධՁͨ͠ɻZhang and Taniguchi [1]͸ۙ઀ͨ͠ΧςΰϦʔͷԼͰ͸ɺI(g1 : g2)ʹΑΔޡ൑ผ֬

཰͸઴ۙతʹ 0ʹऩଋ͠ͳ͍͜ͱΛࣔ͠ɺͦͷ֬཰ʹ͍ͭͯ໌ࣔతͳධՁΛͨͬߦɻ
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2 ͷఏҊྔܭ൑ผ౷ͮ͘جʹ໬౓ݧܦ

ઌʹड़΂ͨΑ͏ʹɺैདྷͷ൑ผղੳ͸ΧςΰϦʔΛنఆ͢ΔεϖΫτϧີ౓ؔ਺Λ༻͍ͯɺۙࣅ

తͳ໬౓ൺΛධՁ͢Δ͜ͱʹΑͬͯߦΘΕ͖ͯͨɻɻຊڀݚͰ͸৽ͨͳΞϓϩʔνͱͯ͠ɺྻܥ࣌

ϞσϧͷॏཁࢦඪʹΑͬͯنఆ͞ΕΔΧςΰϦʔʹର͢Δ൑ผղੳΛల։͢Δɻ{X(t); t ∈ Z}ͱ
͍͏ sݩ࣍ඇਖ਼نઢܗաఔ͕ɺ͋Δॏཁࢦඪ θʢpݩ࣍ϕΫτϧʣͰنఆ͞ΕΔ 2ͭͷΧςΰϦʔ

Π1 : θ = θ1 Π2 : θ = θ2

ͷ͏ͪɺͲͪΒʹଐ͢Δ͔Λ൑ผ͢Δ໰୊Λ͑ߟΔɻॏཁࢦඪ θ͸ɺղੳऀ͕ఆΊΔద౰ͳεί

Ξؔ਺ f(ω;θ) (s× sྻߦ) ͱͱ΋ʹɺ

∂

∂θ

∫ π

−π
tr[f(ω;θ)−1g(ω)]dω = 0, g(ω) : ؔ༩ͷϞσϧͷεϖΫτϧີ౓ྻߦ

ͱ͍͏౳ࣜΛຬͨ͢ҙຯͰɺΧςΰϦʔΛنఆ͍ͯ͠Δ΋ͷͱ͢Δɻf(ω;θ)ͷͱΓํʹΑΓɺθ

ͱͯࣗ͠ݾ૬ؔ܎਺΍ྑ࠷ઢܗ༧ଌࢠͷ܎਺ͳͲΛऔΔ͜ͱ͕ՄೳͰ͋Γɺຊ࣭తʹ g(ω)͸ະ஌ɺ

͔ͭඇ฼਺ܕͰΑ͍ͱ͍͏ར఺͕͋Δɻ͜ͷԾઆʹର͠ɺຊڀݚͰ͸ݧܦ໬౓ൺʹͮ͘ج൑ผ౷

ྔܭ

ELR(θ1 : θ2) :=
2

n
log

R(θ1)

R(θ2)

ΛఏҊ͢Δɻͨͩ͠ɺR(θj)͸ɺԾઆΠj ͷ΋ͱͰͷݧܦ໬౓ൺͱݺ͹ΕΔ΋ͷͰɺ

R(θ) := max
w1,··· ,wn

{
n∏

t=1

nwt ;
n∑

t=1

wtm(λt;θ) = 0,
n∑

t=1

wt = 1, 0 ≤ wt ≤ 1

}

ͱఆٛ͞ΕΔɻຊใࠂͰ͸ɺ͜ͷ൑ผ౷ྔܭʹΑΔ൑ผ͸઴ۙతʹޡ൑ผ֬཰Λ 0ͱ͢Δ͜ͱΛ

ࣔ͢ɻ͜Ε͸൑ผ౷ྔܭELR(θ1 : θ2)͕جຊతͳྑ͞Λ͍ͯͬ࣋Δͱ͍͏͜ͱΛද͍ͯ͠Δɻ·

ͨɺ͞Βʹඍົͳྑ͞ͷࢦඪͱͯ͠ɺΧςΰϦʔΛهड़͢Δॏཁࢦඪ͕

Π1 : θ = θ1 Π2 : θ = θ1 +
1√
n
h

ͷܗͰۙ઀͍ͯ͠Δ৔߹ͷޡ൑ผ֬཰ Pr(2|1)ٴͼ Pr(1|2)Λ໌ࣔతʹධՁ͢Δɻ
ͷಛ௃ͱͯ͠ɺείΞؔ਺ྔܭ໬౓౷ݧܦ f(ω;θ)ٴͼॏཁࢦඪ θ0͸ɺద౰ͳਖ਼ଇ৚݅Λຬͨ

͑͢͠͞Ε͹ղੳऀ͕೚ҙʹఆΊΒΕΔͱ͍͏͜ͱ͕͛ڍΒΔɻ·ͨใऀࠂ͸ɺۙ઀৚݅ͷԼͰɺ
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1 Stationary process with Spearman’s rho

Let (X, Y ) be a random vector with a joint distribution function F(X,Y )(·, ·), a copula
function C(X,Y )(·, ·) and marginal distribution functions FX(·) and FY (·). Spearman’s
rho is one of the well known measures of association between X and Y , and defined as:

ρ(X, Y ) = 3 (P [(X1 − X2)(Y1 − Y3) > 0] − P [(X1 − X2)(Y1 − Y3) < 0]) (1)

where (X1, Y1), (X2, Y2) and (X3, Y3) are independent copies of (X,Y ) (Kruskal (1958)).
We can reexpress (1) as

ρ(X,Y ) = 12
∫ 1

u=0

∫ 1

v=0
C(X,Y )(u, v)dudv − 3

or

ρ(X,Y ) = 12
∫ ∞

x=−∞

∫ ∞

y=−∞
F(X,Y )(x, y)FX(dx)FY (dy) − 3

Definition 1 For given r, s ∈ Z, the autorho function ρY (·, ·) of the stochastic process
{Yt, t ∈ Z} is defined by

ρY (r, s) = ρ(Yr, Ys)

Definition 2 The time series {Yt, t ∈ Z} is said to be rho stationary if

(i) Med(Yt) = µ̃ for all t ∈ Z

(ii) ρY (r, s) = ρY (r + t, s + t) for all r, s, t ∈ Z

Remark 1 If {Yt, t ∈ Z} is rho-stationary process, we redefine the autorho function as

ρY (k) ≡ ρY (k, 0) = ρY (t + k, t)

1



2 Autorho function of linear processes

We consider a serial correlation of time series data with Spearman’s rho. Let U1, U2, . . .

be a sequence of i.i.d. random variables with distribution function FU (·) and density
function fU (·). Consider the linear process

Yt =
∞∑

i=0

θjUt−i (2)

where θ0 = 1 and
∑∞

i=0 |θi|2 < ∞.

Theorem 1 The linear process defined by (2) is rho stationary. The autorho function
at lag k is given by

ρY (k) = 12
∫∫

R2
Fk(y0, yk)fY (y0)fY (yk) dy0dyk − 3

where

Fk(y0, yk)

=






∫

RN
FU



min





y0

θk
−

∞∑

i=0,i#=k

θi

θk
ui, yk −

∞∑

i=1

θiuk+i










×
∞∏

i=0,i#=k

fU (ui) dui (θk > 0)

∫

RN
FU

(
yk −

∞∑

i=1

θiuk+i

)
FU



y0 −
∞∑

i=1,i#=k

θiui





×
∞∏

i=0,i#=k

fU (ui) dui (θk = 0)

∫

RN
min




FU

(
yk −

∞∑

i=1

θiuk+i

)
− FU



y0

θk
−

∞∑

i=0,i#=k

θi

θk
ui



 , 0






×
∞∏

i=0,i#=k

fU (ui) dui (θk < 0)

and

fY (y) =
∫

RN
fU

(
y −

∞∑

i=1

θiui

) ∞∏

i=1

fU (ui) dui.
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Summary

This paper investigates the identification problem of factor models and proposes a new identification

scheme for large-dimensional factor models through heteroskedasiticity of factors.

It is well known that factor models have a serious problem in estimating factors: theʠrotation problem.”

Consider the factor model

xt = Λ0F 0
t + εt, t = 1, 2, . . . , T,

where xt is an N × 1 observation vector, Λ0 is an N × r factor loading matrix, F 0
t is a stationary r× 1 latent

factor and εt is an N × 1 idiosyncratic error vector. Note that 0 indicates the true values. Let H0 be a

non-singular r × r matrix and insert (H0)−1H0 (= Ir) between Λ0 and F 0
t in this model. We thus obtain

xt = Λ0(H0)−1H0F 0
t + εt,

≡ L0F0
t + εt,

where L0 = Λ0(H0)−1 and F0
t = H0F 0

t . Then, it is obvious that we cannot distinguish
(
Λ0, F 0

t

)
from

(
L0,F0

t

)
without imposing additional assumptions on the model. That is, we cannot consistently estimate

(true) Λ0 and F 0
t without imposing any identifying restrictions on the factors and factor loadings in general.

We call H0, L0 and F0
t rotation matrix, rotated factor loadings (matrix) and rotated factors, respectively.

The main assumptions of our model are that the sample period is divided into two regimes and that

the variance of the factors changes depending on the regime while the factor loadings are invariant through
1Takasaki City University of Economics, 1300 Kaminamie-machi, Takasaki, Gunma, Japan. E-mail: stanaka@wd5.so-

net.ne.jp.
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regimes. Let S1 and S2 be the first and second halves of all sample periods, respectively. Then the process

of factors is assumed as follows:

F 0
t = Φ0

1(L)F
0
t−1 + et, E[ete

′
t] = Ir t ∈ S1, F 0

t = Φ0
2(L)F

0
t−1 + et, E[ete

′
t] = Σe0

2 t ∈ S2,

where Σe0
2 = diag(σ2

10,σ
2
20, . . . ,σ

2
r0). On the other hand, this paper assumes that the factor model remains

xt = Λ0F 0
t + εt in both regimes. Although it seems that the invariance of factor loadings is unrealistic given

that the process of factors varies depending on regimes, we see in this paper that the Great Moderation is

one example of this assumption, so it is not an unrealistic one.

Based on the assumptions and asymptotic properties of the PCA estimator, we construct identifying re-

strictions that link reduced form parameters with structural parameters. Let F̃ s and Λ̃s = [λ̃1,s, λ̃2,s, . . . , λ̃N,s]′

be the PCA estimators of F 0,s and Λ, respectively, where F 0,s is a set of the true factors in Ss. Furthermore,

assume that H0
s is a rotation matrix in Ss. Since λ̃i,s − (H0

s
′)−1λ0

i
p→ 0 holds for each i and s in a standard

approximate factor model, essentially we have the restrictions2

Λ̃1 − Λ(H0
1 )

−1 = 0, Λ̃2 − Λ(H0
2 )

−1 = 0.

Note that the first terms are obtained from the data and the second terms are structural parameters. Then,

we can estimate the structural parameters by minimum distance estimation and obtain the estimators of

rotation matrices H0
1 and H0

2 . Since F̃ s
t − H0

sF
0
t

p−→ 0 holds for s = 1, 2 from Bai (2003), we yield the

estimator of true factors by

F̂t =

{
(Ĥ1)−1 F̃t if t ∈ S1

(Ĥ2)−1 F̃t if t ∈ S2
,

where Ĥ1 and Ĥ2 are the minimum distance estimators of H0
1 and H0

2 respectively. It should be noted that

since the total number of restrictions depends on N and N → ∞ is assumed in standard approximate factor

models, the asymptotic properties of the minimum distance estimator are not trivial. This paper investigates

the asymptotic properties of the minimum distance estimators and derives the consistency of Ĥ1 and Ĥ2.

Monte Carlo simulations confirm that our identification scheme works well and give encouraging evidences

that we can precisely estimate the true factors with our estimator as expected.

2See the paper for details of more restrictions.
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