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Asstract. For a class of vector-valued non-Gaussian stationary processes with unknown
parameters, we develop the empirical likelihood approach. In time series analysis it is
known that Whittle likelihood is one of the most fundamental tools to get a good estimator
of unknown parameters, and that the score functions are asymptotically normal. Motivated
by the Whittle likelihood, we apply the empirical likelihood approach to its derivative with
respect to unknown parameters. We also consider the empirical likelihood approach to a
minimum contrast estimation based on a spectral disparity measure, and apply the approach
to the derivative of the spectral disparity.

This paper provides rigorous proofs on convergence of our two empirical likelihoods
to sums of Gamma distributions. Since the fitted spectral model mayflezedit from
the true spectral structure, the results enable us to construct confidence regions for various
important time series parameters without Gaussianity. Numerical studies are given, and
illuminate some interesting features of the empirical approach.

1. Introduction.

Empirical likelihood method is used when the distribution of an appropriate pivotal quantity is
unknown. It is shown that empirical likelihood ratio is asymptotically chi-square distributed (e.g.
Owen (2001)). However, most of studies on this topic are aimed to independent observations.

For dependent observations, Monti (1997) applied the empirical likelihood approach to the
derivative of the Whittle likelihood, and showed that the empirical likelihood ratio is asymptoti-
cally chi-square distributed. The results were applied to the problem of testing and construction
of confidence region. In this paper we develop a rigorous asymptotic theory for the empirical
Whittle likelihood approach when

(i) the process concerned is a vector-valued non-Gaussian linear process, and
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(i) afitted spectral model may befidirent from the true one.

Concretely we derive the asymptotic distribution of the empirical likeling(#) based on the
derivative of the Whittle likelihood with respect to unknown parameétefrhen it is shown that
—2logR(#) converges to a sum of Gamma distribution. In view of (i) and (ii), using the result
we can construct confidence regions for various important time series indices without assuming
specified spectral structures and Gaussianity of the process.

As an example, we deal with the estimation of autocorrelations. When the fitted spectral
model function is chosen appropriately, we can estimate the autocorrelations with the empirical
likelihood method. Moreover, when the autocovariance satisfies a certain condition we can show
that the estimation with the empirical likelihood method is superior to that with the sample auto-
correlations in the sense of asymptotic covariances of both estimators. Especially in the case of
a scalar-valued linear process, the asymptotic distribution of the empirical likelihood ratio is chi-
square while that of the sample autocorrelation is normal whose variance includes unknown ture
autocorrelation (e.g. Brockwell and Davis (1990)). This point is also an advantage of empirical
likelihod method. In addition, we deal with a prediction problem. We fit AR(1) model to the stock
data and make prediction intervals by both methods of the empirical likelihood and the ordinary
MLE. The empirical likelihood method gives a narrower prediction interval. Numerical studies
for the above results are provided.

We also consider the empirical likelihood approach to a minimum contrast estimation based
on a disparity measure between a fitted spectral model and the true spectral density. Then it is
shown that-2 log (the empirical likelihood for the derivative of the disparity measure) converges
to a sum of Gamma distribution. Similarly we can construct confidence regions for unknown
parameters by using the result. In this method, choosing the disparity measure appropriately we
can give non-iterativefBicient estimators o in explicit forms, whereas the (quasi) maximum
likelihood estimators procedure requires iterative methods except for autoregressive models.

This paper is organized as follows. Section 2 describes our setting. In Section 3, we explain
the empirical likelihood approach for the Whittle likelihood. The asymptotic distribution of the
empirical likelihood ratio is derived. Section 4 deals with the estimation of autocorrelations and
comparison between the estimation with empirical likelihood method and that with sample au-
tocorrelations. We also provides some numerical studies on confidence regions. In addition, a
prediction problem is dealt. Two prediction intervals obtained by the empirical likelihood method
and the MLE method are compared. In Section 5, we consider the empirical likelihood approach
for the minimum contrast estimation, and give the asymptotic distribution of the empirical likeli-
hood ratio. The proof of theorem is relegated to Section 6.

As for notations used in this paper, we denotedtiecomponent of vectaa by a, and denote
the (@, 8) component of matriXA and A™* by A5 andA”, respectively, and we denote the set of
all integers byZ, and denote Kronecker’s delta b, I).

2. Setting.

Consider a vector-valued linear procéxst);t € Z} generated by
XM=Y G()et-j). tez, (1)
i=0

where theX(t)’'s haves components and theft)'s ares dimensional vectors satisfyirtgfe(t)] = 0
andE[e(t)e(l)’] = o(t, 1)K, with K a nonsingulas by s matrix; G(j)’s are constans by s matrices;
and the components of,e and G are all real. If3j2,tr{G(j)KG(j)’} < oo (this condition is
assumed throughout), the proc¢X4t)} is a second-order stationary process and has the spectral



density matrix which is representable as
1
9w) = 5 kwKkw)',  -r<w<n, )

wherek(w) = 352, G(j)e*). For the stretctX(t), t = 1,..., T, we denote byl x(w), the peri-
odogram; namely

I1(w) = (27T) tdr (w)dr(w)*, T <w<T.
wheredt(w) = ZLI X(t)e“t, We set down the following assumptions.
AssumPTIONL. (i) {X(t)} is strictly stationary with all of whose moments exist.

(if) The jointkth-order cumulanty«(Us, . . ., Uk-1).8,..8c OF X(t)g,, X(t + U1)g,, . . ., X(t + Uk-1),
satisfies

(e

DT @) ekl Uea)p, gl < 0 (3)

Ug,...,Uk-1=—00

forj=1,....,k=1,81,...,6ck=1,...,sand anyk, k=23,....

ASSUMPTION2. For the sequencgCy} defined by

oo

Ck= sup Z [Cxk (U, . . ., Uk-1)g,. il

,,,,,

it holds that

for zin a neighborhood of 0.

Assumption 1 (ii) means that the own dependence of the sti¢fghbecomes weak when
time lag becomes large. If there exists some independent pair in the segi@peeX(t +
U1)g,, - - - » X(t + Uk-1)g,, thencyx(uy, ..., Uw1)ss,. 5 becomes 0. Therefore (ii) seems a natural
assumption for the dependence{f(t)}. Assumption 2 is needed to control the maximum of
important terms which will appear in the proofs.

We denote by(ws, . . . , wk-1)p,.. 5. thekth-order spectral density of the procéXgt)}; namely

00

k1
—k+1 .
(w1, - .. 1)y g = (20)7 Z Cxe(Un. - U-1)p,..p5, X1 Z ujw; .
=

3. Empirical likelihood approach.

Empirical likelihood is a nonparametric method of statistical inference. It allows us to use likeli-
hood methods, without assuming that the data come from a known family of distribution. Empiri-
cal likelihood method is based on the nonparametric likelihood R(#9 = [T, nw; whereF is

an arbitrary distribution which has probability on the dataX;. We use thiR(F) as a basis for
hypothesis testing and confidence intervals.



When we are interested in paramefler R which satisfie€[m(X; )] = 0, wherem(X; 8) €
R%is a vector-valued function, called estimating function, we consider the empirical likelihood ra-
tio functionR(0) (defined in (11) below). As a test statistic, it is shown thatogR(#) converges
in distribution to the chi-square distribution with degree of freedpnvhenX;s are independent
and identically distributed, (e.g. Owen (2001)).

For a scalar-valued linear process whose true spectral density is written parametrically as
g(w; ), Monti (1997) applied the empirical likelihood approach to the Whittle likelihood, that is,

" } I (w)
[,, {Iogg(w,e) + g(w;e)} dw, 4

and used its discriterized derivativ@y/ 00) {log g(1; 6) + 11 (1,)/9(A; )}, whered, = 2rt/T (through-
out this paper), as a counterpart of Owen’s estimating functiofl i the true value ob, then
she showed that2 logR(6p) tends to chi-square distribution with degree of freedpm
In this section, for the vector-valued non-Gaussian linear process (1) with the true spectral
density matrixg(w), we fit a parametric spectral modglw; 6) with 6 € ® c RY, to g(w). Here
f (w; ) may be diferent fromg(w). Consider the multivariate Whittle likelihood

f " |log detf (w; 8) + tr{f (w; ) 11 (w)}] dw

ys

Here, we impose the following assumption on the parametric spectral maoad).

AssuMPTION3. (i) ® is a compact subset &9.
(i) f(w;0)is continuously twice gerentiable with respect té € ©.

(i) f(w;0) € F. HereF is the parametric spectral family whose element is expressed as

f(w: 6) = (Z Bj(O)e”“’)E(Z B,-(e)éiw) 5)
=0 =0
whereB;(6) is sx smatrices,Bo(6) is sx sunit matrix andX is an sx s symmetric matrix.

The above model (5) is the spectral form of the general linear process so this setting is quite
natural. Note that the parametgidoes not depend o8, which corresponds to the covariance
matrix of the innovation. Like this, whethdepends on only the cfiigient partsB; and does not
depend on the innovation p&t we call@ "innovation-free”. Letdy be the value defined by

=0, (6)

6=6¢

% fﬂ[log detf(w; 6) +tr{f(w;0)‘1g(w)}] dw

which is called the pseudo-true vale@fWe use

D(fy, ) := f ﬂ[log detf (w; 6) + tr{ f (w; 6) ' g(w)}] dw

as a disparity measure betwebfw; ) and g(w), sofp means the point minimizing the(f,, g).
If @ is innovation-free, therf log detf (w; 0) dw is independent ob (Brockwell-Davis (1991,
p.191) or Priestley (1981, p. 760)) Therefore (6) becomes

0

60f tr{f (w; 6) 1 g(w)} dw

= 0. 7)
6=69
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Furthermore, this setting is unexpectedly useful for many other situations, such as, predic-
tion, interpolation and smoothing problems. In what follows, we give explanations of these three
examples in a scalar case.

First, consider the-step prediction problem as in Hannan (1970 Chapter Il Section 2). We
predict X; using a linear combination ofj, j > v, that is, we useX; = 2isvj(0)Xj as a
predictor. We measure the error of the predictoEpy; — X;|°] and seek the best linear predictor
which minimizes this error. If we specify the spectral modgethe functionsa;(6)’s are specified
(see Grenander-Rosenblatt (1957, p.261)). Itis seen that the spectral representati@msidf
are

X, = f Teo Adw), K= f ﬂe-“w(Za,-(o)éiw) 2(dw)

>v

whereE(|z(dw)|?)= g(w) dw, E(z(dw) z(dn))= 0, w # 5. Then, the prediction error is expressed as

L,

We seek th@ which minimizes this error, that is, seék satisfying

% fﬂ ‘1 - ; aj(O)e”“’|zg(w) dw

Compare (7) and (8). This is exactly our problem if we set

1->a (9)e”‘”|2 () do.

>v

=0. (8)
0=0¢

fwo)=-) aj(a)éiw(z.

j>v

Second, we consider the interpolation problem. {Xg} be a stationary process with spectral
densityg. Assume that the entire time series has been observed except for the time pdint
ThusX;, t # 0, have been observed. We would like to estin¥idy a linear combination of the
observed stochastic variables, thatXs,= 2jz02j(0)Xj. The function form ofa;(#) is given in
Hannan(1970). Similar to the prediction problem, the error of interpolation becomes

L,

We seek th@ minimizing this error, that is, sedk satisfying
o (7 iiol2
- _ . jw
= I | ]ZO a;(0)¢ | 9(w) dw

Compare (7) and (9). This is exactly our problem if we set

1- 3 a0)¢"[ g(w) do.

i#0

=0. ©)
6=0¢

fwi6) =[1- > a0 .

j#0

Third, we consider the following smoothing problem. We smooth the trajectoxy lo§

N
X; —> Z 0 Xes -
=N



Then, similar to the previous problem, the error of this smoothing is expressed as

N2
-3 ejélw| 9(w) dw.
=N
We seek th@ = (6_y, . . ., )’ minimizing this error, that is, seék satisfying

0

5 = 0. (10)

0=6o

Z gl | 9(w) dw

Compare (7) and (10). This is exactly our problem if we set
N2
f(w; 6) = |1— > ejélw‘
j=—N

Like these, our approach based on fitting moéieb; #) which may be dierent from the true
spectral density, has a very wide appllications and potencials for time series analysis.
From (7), we naturally set

m(1; 6) = %tr{ (A 0) 77 (1))

as an estimating function. We use the following empirical likelihood ratio fundti@) defined
by

R(6) = max{]_[ Tw | Zwtm(/lt,e) =0, w >0, Zwt } (11)

t=1

Then we get the following theorem.

THEOREM 1. Let{X(t)} be the linear process defined in (1) satisfying Assumptions 1 - 3. Then

~210gR(6o) <> (AN) (AN) (12)

asT — oo, whereN have ag-dimensional normal random vector with zero mean vector and

_1 1
covariance matrix (identity matrix) andA = X,?X;. HereX, is q by g matrix whos€(y1, y2)
element is
} dw
6=0o

T =1 o

E1yy, = % f tr[g(w) Mwiby g(w) 0t (w;0)
Of (wa; O

=05 00

. P 36,

ff 31‘(a)1,19)ﬁ1’32

,,,,, Y2 6=69
X Ga(~w1, w2, —(1)2),81_“,34 dw1dwo,
andX, is q by g matrix whosgy1, y») element is
6f(w 6)* of (w; 0)*
(027 ) ftr[ (w) glw) L9 do
Y1v2 2 06y, e 90 06, 6=60
+_f tr[ o) 8f(w 6)* }tr[ o) 1@ ) }dw.
96y, 0=00




REMARK 1. Denote the eigenvalues AfAbya, ..., aq, then we can write
q
(ANY(AN) = 37V, (13)
y=1

whereV, is distributed ag'(27%, (2a,)™%).

X, andX, contain the unknown spectral density matgéw) and the fourth-order spectral
densitygs(—w1, w2, —w2)s, .4, IN practice, we can make appropriate consistent estimEoasd
¥, of £, and X, respectively as follows. We can use non-parametric spectral estigaio)
(defined in Section 5) and substitute it irgfw) in X; andX,, then we get the consistent estimator
for the integral of function ofg(w). It is complicated to give the explicit form of consistent
estimator for the general integrals of fourth-order spectral degsi{tyw:, w2, —w2)s,. 5, IN Xa1.
Basically we substitute the fourth-order weighted periodograms into the fourth-order spectral.
The consistent estimators can be found in Keenan (1987 Section 2). Thus we can obtain consistent
estimator£; andX,. Then, from Slutsky’s theorem it follows that

q
(AN)(AN) 5 (ANY(AN) = >’ v, (14)
y=1

~ ~A_lal
where A = X,?X;. Using this theorem, we can construct confidence regions.fdfirst, we
choose a proper threshold valge which isa percentail of estimated distribution of (13) based on
the relation (14). Then we caluculat@ logR(6) at numerous points over the range and consutruct
the region

Ca,T ={0] - ZIOgR(a) < Zyh

REMARK 2. In the scalar case, we can easily See= X,. Then the asymptotic distribution of
—21logR(6o) becomeyyg, which is independent of unknown parameter.

4. Numerical simulation

In this section, we provide applications of Section 3.

First we discuss the estimation of autocorrelations and provide a numerical simulation. Denote
I'(h) = Co X(t), X(t+ h)] as the autocovariance matrix ¥fwith lagh. Let us consider the linear
process difined in (1). If we set

0=11,....005...... O, ... 059,
011 -+ Ois

AO)=| -
951 955
and
f(w; 0) = (I - A@)E"™) (1 - A@)E™) ™,

then the condition

T

0 .o\-1 —_
3 gt @) gw)) o dw =0 (15)



shows
S T T
Dol [ g do= [ Gl o Grpa=1....9) (16)
j:l = -7
It is well known that the autocovariance and the spectral density have following relation

I'(h) = f " " g(w) dw. (17)
From (16) and (17), we obtain
AB)T(0)=T(hY < A(bp) = L(hI(0)™.

Hence, we can estimate the quanfitgh)I'(0)~, which is a generalized quantity of the usual
autocorrelatiop(h) = T'(h)/T'(0) in scalar case.

REMARK 3. In this example, we do not assume specified spectral structures and Gaussianity for
the proces(t).

The usual estimator fdr(h) is

T-h
T‘lz (X() = X7)(X(t+h) - X7)  for O<h<n-1,
I'(h) = i

T-1 Z (X(t) = X7)(X(t+h) = X7) for —n+1<h<0,
t=—h+1

whereXt = YT, X(t). Therefore we can estimate the quaniigh)['(0)-! by I'(h)['(0)"L. By
Hosoya and Taniguchi (1982 Theorem 2.2) and Slutsky’s lemma, we can saéﬁ(]?a(h)f(O)‘l—
I'(h)I'(0)™!) have a joint asymptotic normal distribution whose mean is zero and the asymptotic
covariance betweefVT (F(WI(0)* - T(I(0) )], 5, and[VT([T(M)I(0)™ - T(MI(0)™)],,4, is

given as

>y [T(0)P52I(0)Psb
[TU (0, N)gyp; s
By Bo=1
L(0Y#2L(h) g, T (OF#sI(0)'s
- 32 O’(h, o)ﬁlﬁéﬁgﬁé
L0y (h)g,s, [(0F 2L (0)2
- ~ (0, g, pas,

+T(N)p,5, T (W), D (O 2T (OY#5 T (02T (0 (0, O)B;ﬂg,ﬂ;-ﬁg]’
where

o(hg, hz)ﬁlﬂZsﬁSﬁA
_ zﬂf [g(w)ﬁlﬂgg(w—m expi—i(hz — h)w} + 9(w)pys,(W)p,p, EXPHI (N2 + hl)w}] dw

P V4
w20 )] exptines + hawoonok(-oK@ok-02)

1,..., 04=l

e
Oy (w1, —w2, W2) .. dw1dw,.



andg;(-, -, -)... is the fourth order spectral density of the procis}.
Let us consider the scalar case of (1), thasis, p = 1. Denote the estimattfi(h)/f(O) by
p(h). Then, the asymptotic variance ofT (5(h) — p(h)) becomes

1

V= Tor

[p(h)ZO'(O, 0) — p(h){o(0, h) + o-(h, 0)} + o~(h, h)] (18)
where
o(h,hy) = 21 f " g(w)?(e7Me-me | dturho)ey g,

On the other hand, fron?@) in Section 6 we can see the corresponding asymptotic variance of
the empirical likelihood method 5,, and easily show that

SHLCIY

Therefore ifl’(0) < x, the empirical likelihood method is better than that based on the asymptotics
of VT(p(h) — p(h)). Furthermore, (18) shows that the asymptotic distribution of sample autocor-
relation depends on the unknown autocorrelafi¢i) while that of empirical likelihood ratio is
independent of it in scalar case (see Remark 2). This point can be also an advantage of empirical
likelihood method.

Next, we give a numerical simulation. Let us consider the following two dimensional AR(1)

model
X1 03 0 \{ X-11 €1
S ol IS e 19

( X2 ) ( 0 05 )( Xi-1,2 &, (19)
where €1, &)"’s are independent and identically distributed as two dimensitdastribution
with mean zero and covariance matix Here we assume that innovation part has correlation,
i.e., K is not a diagonal matrix so this setting is not a trivial extension from scalar case even if
the codficient matrix is diagonal. Theoretically we can estimateltti®I'(0)~* but this matrix is

2x 2 and has 4 elements so it idftult to express its confidence region. Therefore, we especially
set

(61 0
A(6) _( 0 6, )
then (15) shows

_ r]_]_(h)/rll(o) 0
A(6p) = ( 0 I'22(h)/T'22(0) )

In this situation the true value is 2 dimensional and we can display the confidence region. Denote

0o = (60,1, 602)" = (F12()/T'11(0), T22(h)/T22(0)) = (pa(h), p2(h))” = p(h). We estimate the auto-

correlation with lagh = 1, that is,fy = p(1). In AR(1) model (19), it becomes.®0.5). Figure

1 shows that 90% confidence regiondgfby use of the empirical likelihood method and sample

5125 35
35 25

T = 300. To construct the empirical region, we calculailogR(#) at numerous points over

the range and gather the points which sati#fyy — 2 logR(0) < Zyg0}, Wherezpgg is the 90 %
percentail of the asymprotic distribtion which is expressed in (12). Both regions include the true

value (03,0.5), but the region using the empirical likelihood method is much narrower than that

autocorrelation method with covariance matrix of innovation= ) sample size



using the sample autocorrelation method. Figure 2 shows that the case of covariance matrix of
427 345
345 518
using the sample autocorrelation method does not include the true vad@.5y. Simulation

result shows the empirical likelihood method is superior to autocorrelation method.

As the final of this section, we consider a prediction problem. Here is a stock price data of
KDDI (Japanese communication company) from June 13, 2005 to January 30, 2006 and denote
their log returns byXy, ..., X155 (X/s are modified so that their mean is zero). Assume that we
have observeatl, .. X154 and f|tt|ng AR(1) model, consider to predss. Its predlctorX155 is
expressed aXss = b X154 Whereb is a certain estimator of ciicient of AR(1) model. We plug
in lower and upper bound dfin both empirical likelihood case and usual MLE case. In Figure
3, the solid line showXy, ..., X;55 and the dashed lines show 99% confidence intervals, of
(from the top, MLE’s upper bound, empirical upper bound, empirical lower bound and MLE’s
lower bound). The concrete values of them are provided in Table 2. We obtain the result that the
confidence interval via empirical likelihood approach is narrower than that via MLE's approach.

innovationK, = . In this case, both regions are roughly same size but the region

1.0

0.8

theta2
0.4 0.6

0.2

- S~
empirical ~—
. ——= sample

0.0

-0.2

-0.2 0.0 0.2 0.4 0.6 0.8
thetal

Figure 1: 90% confidence region @f(6,) with K.
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theta2

0.6

0.5

0.4

0.3

0.2

—— empirical
——= sample

0.0 0.2 0.4 0.6
thetal

Figure 2: 90% confidence region @ (6,) with K,
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Table 1: The values of prediction

lower bound | upper bound range
MLE | -212x103%| 597x10° | 8.08x 1073
empirical | —1.68x 103 | 5.64x 1073 [ 7.32x 1073

X155 =175% 104

0.06
|

0.04
|

0.02
|

0.0
1

-0.02

154

Figure 3: 99% confidence interval &fss
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5. Minimum contrast estimation

In this section, we apply the empilical likelihood method to minimum contrast estimation. The
minimum contrast estimation is based on a disparity measure between the true spectral density
olw) € F (F is a space of spectral density matrices) and a certain parametric f@miy
{f(w;0); f(w;0) € ¥,0 € ® c RY} of spectral densities. The disparity measure is defined as
D(fy,09) = fj; K(fy, 9, w) dw, whereK(., -, -) is an appropriate holomorphic function which mea-
sures a nearness betwegfw; 8) and g(w). (see, Taniguchi and Kakizawa, 2000, Section 6.2).
Since the trueg(w) is actually unknown, we introduce a non-parametric window type estimator
Or(w) for g(w).

We set down the following assumptions.

AssuMPTION4. W(X) is real, bounded, even, non-negative and satisfies

j:: W(x)dx= 1.

ASSUMPTIONS. For Mt = O(T?), (1/4 < a < 1/2), the functiorWy (w) = MTW(Mtw) can be
expanded as

W (w) = % Z‘ W(MI_T) e,

wherew(x) is a continuous, even function wig(0) = 1, [w(x)| < 1 and f_‘z w(x)? dx < oo, and
satisfies

m 1-w(X)

|X—0 |X|2

= K2 < 00,
Henceforth we use the following non-parametric spectral estimator
T
() = | Wrlw -0l v() o
-

REMARK 4. We can also define the discreterized non-parametric estinﬁiﬁ(@) by
21 <
~dis _ _
Or (w) = _T élVVT(w As)l1(As).

Due to Brillinger (2001, Theorem 5.9.1), the two estimabp(w) and §¥'S(w) are difer by the
magnitudeOp(MrT-1(Mr + log T)).

A functionalIl defined o is determined by the requirement that for the parametric family
of spectral densitie®,

D(frg. 9= minD(fy. )  foreveryge 7.

Taniguchi and Kakizawa(2000, Theorem 6.2.3.) showed that the funciibiseéxpanded as

+O(ll or(@) - g() IP)

7’

(@) = 11(g) - D! ( [t @) - gt dw)

13



where

T 82
Dy = ——K(fy, g, 0) dw  (qx qgmatrix),
. 3699 iy
(¥j(w)) = L{iK(f z )| } (sx s matrix)
VilDsse = Gzup a0, 5 lnc Z-gwy '

functionalll, so we set
M(;6) = =D ([ ()& (] ), (20)

as an estimating function.
FothT=1 E[m(4;, )] — 0, we assume the following.

ASSUMPTIONG. Foranye > 0, we can takey;(w) such that
[ t@eeldo=06. (i=1...9

Then, we get the following result.

THEOREMZ2. Let{X(t)} be the linear process defined in (1) satisfying Assumptions 1 - 6. Then

~2logR(TI(g)) > (BNY(BN)

asT — oo, whereN have ag-dimensional normal random vector with zero mean vector and
_1 1

covariance matrix| (identity matrix) andB = X,?X2 whereXs = Dg'UgDy' and 4 =

Dy'V¢Dy'. HereUy is g by g matrix whosg(y, y2) element is

U = 7 [ ], @ o), ()] do

1 S T
" on Z 1fj:,, {wyl(w)}ﬁlﬁz {w”(w)}ﬁsﬁct

Brse-sBa=
X Oa(—w1, w2, —w2)g,. g, dwidwy,

andV g is q by g matrix whos€y1,y2) element is

1 T
Vahr = 5 | tlo@m, @ [swh, )] o
REMARK 5. Assuming that)/s?> becomes a positive integer, &t g/s? and if we set

K(6.Z,w) = {log de{ 2 (w; 6) 1))’
J
f(w:0) = exp{z H(j: 6) cos(jw) + S(w)}
=1

whereexp{-} is the matrix exponentiaki(j; 8) is ansx smatrices which satisfies

vedH(j; )} = (Oz(j-1)+1." -+ »0g))

14



and S(w) is ansx smatrix which is independent éf then it is not dfficult to show

[ rw@eeido=0 (=1....q.

Hence we can construct a model satisfying Assumption 6.

This method has the following desirable property. For various spé¢tgaf), choosing the
functionK(,-,-) in D(f,, g) appropriately we can give non-iterativfieient estimators o# in
explicit forms, whereas the (quasi) maximum likelihood estimators procedure requires iterative
methods except for autoregressive models. Moreover, for the following density

9(w) = (1 = 6)fy(w) + ohy(w)

whereh, is a perturbation which is the density with pointmass ong atrobustness of functional
ITis reported in numerical simulation. In detail, see Chandra and Taniguchi (2006 Theorem 5 and
p.31).
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