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A. For a class of vector-valued non-Gaussian stationary processes with unknown
parameters, we develop the empirical likelihood approach. In time series analysis it is
known that Whittle likelihood is one of the most fundamental tools to get a good estimator
of unknown parameters, and that the score functions are asymptotically normal. Motivated
by the Whittle likelihood, we apply the empirical likelihood approach to its derivative with
respect to unknown parameters. We also consider the empirical likelihood approach to a
minimum contrast estimation based on a spectral disparity measure, and apply the approach
to the derivative of the spectral disparity.

This paper provides rigorous proofs on convergence of our two empirical likelihoods
to sums of Gamma distributions. Since the fitted spectral model may be different from
the true spectral structure, the results enable us to construct confidence regions for various
important time series parameters without Gaussianity. Numerical studies are given, and
illuminate some interesting features of the empirical approach.

1. Introduction.

Empirical likelihood method is used when the distribution of an appropriate pivotal quantity is
unknown. It is shown that empirical likelihood ratio is asymptotically chi-square distributed (e.g.
Owen (2001)). However, most of studies on this topic are aimed to independent observations.

For dependent observations, Monti (1997) applied the empirical likelihood approach to the
derivative of the Whittle likelihood, and showed that the empirical likelihood ratio is asymptoti-
cally chi-square distributed. The results were applied to the problem of testing and construction
of confidence region. In this paper we develop a rigorous asymptotic theory for the empirical
Whittle likelihood approach when

(i) the process concerned is a vector-valued non-Gaussian linear process, and
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(ii) a fitted spectral model may be different from the true one.

Concretely we derive the asymptotic distribution of the empirical likelihoodR(θ) based on the
derivative of the Whittle likelihood with respect to unknown parameterθ. Then it is shown that
−2 logR(θ) converges to a sum of Gamma distribution. In view of (i) and (ii), using the result
we can construct confidence regions for various important time series indices without assuming
specified spectral structures and Gaussianity of the process.

As an example, we deal with the estimation of autocorrelations. When the fitted spectral
model function is chosen appropriately, we can estimate the autocorrelations with the empirical
likelihood method. Moreover, when the autocovariance satisfies a certain condition we can show
that the estimation with the empirical likelihood method is superior to that with the sample auto-
correlations in the sense of asymptotic covariances of both estimators. Especially in the case of
a scalar-valued linear process, the asymptotic distribution of the empirical likelihood ratio is chi-
square while that of the sample autocorrelation is normal whose variance includes unknown ture
autocorrelation (e.g. Brockwell and Davis (1990)). This point is also an advantage of empirical
likelihod method. In addition, we deal with a prediction problem. We fit AR(1) model to the stock
data and make prediction intervals by both methods of the empirical likelihood and the ordinary
MLE. The empirical likelihood method gives a narrower prediction interval. Numerical studies
for the above results are provided.

We also consider the empirical likelihood approach to a minimum contrast estimation based
on a disparity measure between a fitted spectral model and the true spectral density. Then it is
shown that−2 log (the empirical likelihood for the derivative of the disparity measure) converges
to a sum of Gamma distribution. Similarly we can construct confidence regions for unknown
parameters by using the result. In this method, choosing the disparity measure appropriately we
can give non-iterative efficient estimators ofθ in explicit forms, whereas the (quasi) maximum
likelihood estimators procedure requires iterative methods except for autoregressive models.

This paper is organized as follows. Section 2 describes our setting. In Section 3, we explain
the empirical likelihood approach for the Whittle likelihood. The asymptotic distribution of the
empirical likelihood ratio is derived. Section 4 deals with the estimation of autocorrelations and
comparison between the estimation with empirical likelihood method and that with sample au-
tocorrelations. We also provides some numerical studies on confidence regions. In addition, a
prediction problem is dealt. Two prediction intervals obtained by the empirical likelihood method
and the MLE method are compared. In Section 5, we consider the empirical likelihood approach
for the minimum contrast estimation, and give the asymptotic distribution of the empirical likeli-
hood ratio. The proof of theorem is relegated to Section 6.

As for notations used in this paper, we denote theαth component of vectora by aα and denote
the (α, β) component of matrixA andA−1 by Aαβ andAαβ, respectively, and we denote the set of
all integers byZ, and denote Kronecker’s delta byδ(t, l).

2. Setting.

Consider a vector-valued linear process{X(t); t ∈ Z} generated by

X(t) =

∞∑

j=0

G( j) e(t − j), t ∈ Z, (1)

where theX(t)’s havescomponents and thee(t)’s aresdimensional vectors satisfyingE[e(t)] = 0
andE[e(t)e(l)′] = δ(t, l)K, with K a nonsingularsby smatrix;G( j)’s are constantsby smatrices;
and the components ofX,e andG are all real. If

∑∞
j=0 tr{G( j)KG( j)′} < ∞ (this condition is

assumed throughout), the process{X(t)} is a second-order stationary process and has the spectral
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density matrix which is representable as

g(ω) =
1
2π

k(ω)Kk(ω)∗, −π ≤ ω ≤ π, (2)

wherek(ω) =
∑∞

j=0 G( j)eiω j . For the stretchX(t), t = 1, . . . ,T, we denote byI X(ω), the peri-
odogram; namely

I T(ω) = (2πT)−1dT(ω)dT(ω)∗, −π < ω < π.

wheredT(ω) =
∑T

t=1 X(t)e−iωt. We set down the following assumptions.

ASSUMPTION1. (i) {X(t)} is strictly stationary with all of whose moments exist.

(ii) The jointkth-order cumulantcXk(u1, . . . , uk−1)β1β2...βk of X(t)β1,X(t + u1)β2, . . . ,X(t + uk−1)βk

satisfies

∞∑

u1,...,uk−1=−∞
(1 + |u j |) |cXk(u1, . . . ,uk−1)β1...βk | < ∞ (3)

for j = 1, . . . , k− 1, β1, . . . , βk = 1, . . . , sand anyk, k = 2,3, . . . .

ASSUMPTION2. For the sequence{Ck} defined by

Ck = sup
β1,...,βk

∞∑

u1,...,uk=−∞
|cXk(u1, . . . , uk−1)β1...βk |,

it holds that

∞∑

k=1

Ckz
k/k! < ∞

for z in a neighborhood of 0.

Assumption 1 (ii) means that the own dependence of the stretchX(t) becomes weak when
time lag becomes large. If there exists some independent pair in the sequenceX(t)β1,X(t +

u1)β2, . . . ,X(t + uk−1)βk, thencXk(u1, . . . ,uk−1)β1β2...βk becomes 0. Therefore (ii) seems a natural
assumption for the dependence of{X(t)}. Assumption 2 is needed to control the maximum of
important terms which will appear in the proofs.

We denote bygk(ω1, . . . , ωk−1)β1...βk, thekth-order spectral density of the process{X(t)}; namely

gk(ω1, . . . , ωk−1)β1...βk = (2π)−k+1
∞∑

u1,...,uk=−∞
cXk(u1, . . . , uk−1)β1...βk exp

{
−i

k−1∑

j=1

u jω j

}
.

3. Empirical likelihood approach.

Empirical likelihood is a nonparametric method of statistical inference. It allows us to use likeli-
hood methods, without assuming that the data come from a known family of distribution. Empiri-
cal likelihood method is based on the nonparametric likelihood ratioR(F) =

∏n
i=1 nwi whereF is

an arbitrary distribution which has probabilitywi on the dataXi . We use thisR(F) as a basis for
hypothesis testing and confidence intervals.
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When we are interested in parameterθ ∈ Rq which satisfiesE[m(X; θ)] = 0, wherem(X; θ) ∈
Rq is a vector-valued function, called estimating function, we consider the empirical likelihood ra-
tio functionR(θ) (defined in (11) below). As a test statistic, it is shown that−2 logR(θ) converges
in distribution to the chi-square distribution with degree of freedomq, whenX′i s are independent
and identically distributed, (e.g. Owen (2001)).

For a scalar-valued linear process whose true spectral density is written parametrically as
g(ω; θ), Monti (1997) applied the empirical likelihood approach to the Whittle likelihood, that is,

∫ π

−π

{
logg(ω; θ) +

IT(ω)
g(ω; θ)

}
dω, (4)

and used its discriterized derivative (∂/∂θ)
{
logg(λt; θ) + IT(λt)/g(λt; θ)

}
, whereλt = 2πt/T (through-

out this paper), as a counterpart of Owen’s estimating function. Ifθ0 is the true value ofθ, then
she showed that−2 logR(θ0) tends to chi-square distribution with degree of freedomq.

In this section, for the vector-valued non-Gaussian linear process (1) with the true spectral
density matrixg(ω), we fit a parametric spectral modelf (ω; θ) with θ ∈ Θ ⊂ Rq, to g(ω). Here
f (ω; θ) may be different fromg(ω). Consider the multivariate Whittle likelihood

∫ π

−π

[
log det f (ω; θ) + tr{ f (ω; θ)−1I T(ω)}

]
dω.

Here, we impose the following assumption on the parametric spectral modelf (ω; θ).

ASSUMPTION3. (i) Θ is a compact subset ofRq.

(ii) f (ω; θ) is continuously twice differentiable with respect toθ ∈ Θ.

(iii) f (ω; θ) ∈ F . HereF is the parametric spectral family whose element is expressed as

f (ω; θ) =

( ∞∑

j=0

B j(θ)e
i jω

)
Σ

( ∞∑

j=0

B j(θ)e
i jω

)∗
(5)

whereB j(θ) is s× smatrices,B0(θ) is s× sunit matrix andΣ is ans× ssymmetric matrix.

The above model (5) is the spectral form of the general linear process so this setting is quite
natural. Note that the parameterθ does not depend onΣ, which corresponds to the covariance
matrix of the innovation. Like this, whenθ depends on only the coefficient partsB j and does not
depend on the innovation partΣ, we callθ ”innovation-free”. Letθ0 be the value defined by

∂

∂θ

∫ π

−π

[
log det f (ω; θ) + tr{ f (ω; θ)−1g(ω)}

]
dω

∣∣∣∣∣
θ=θ0

= 0, (6)

which is called the pseudo-true vale ofθ. We use

D( f θ, g) :=
∫ π

−π

[
log det f (ω; θ) + tr{ f (ω; θ)−1g(ω)}

]
dω

as a disparity measure betweenf (ω; θ) andg(ω), soθ0 means the point minimizing theD( f θ, g).
If θ is innovation-free, then

∫ π

−π log det f (ω; θ) dω is independent ofθ (Brockwell-Davis (1991,
p.191) or Priestley (1981, p.760)). Therefore (6) becomes

∂

∂θ

∫ π

−π
tr{ f (ω; θ)−1g(ω)} dω

∣∣∣∣∣
θ=θ0

= 0. (7)
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Furthermore, this setting is unexpectedly useful for many other situations, such as, predic-
tion, interpolation and smoothing problems. In what follows, we give explanations of these three
examples in a scalar case.

First, consider theν-step prediction problem as in Hannan (1970 Chapter III Section 2). We
predict Xt using a linear combination ofXt− j , j ≥ ν, that is, we useX̃t =

∑
j≥ν a j(θ)Xt− j as a

predictor. We measure the error of the predictor byE
[|Xt − X̃t |2] and seek the best linear predictor

which minimizes this error. If we specify the spectral modelg, the functionsa j(θ)’s are specified
(see Grenander-Rosenblatt (1957, p.261)). It is seen that the spectral representations ofXt andX̃t

are

Xt =

∫ π

−π
e−itω z(dω), X̃t =

∫ π

−π
e−itω

(∑

j≥ν
a j(θ)e

i jω
)

z(dω)

whereE
(|z(dω)|2)= g(ω) dω, E

(
z(dω) z(dη)

)
= 0,ω , η. Then, the prediction error is expressed as

∫ π

−π

∣∣∣∣1−
∑

j≥ν
a j(θ)e

i jω
∣∣∣∣
2

g(ω) dω.

We seek theθ which minimizes this error, that is, seekθ0 satisfying

∂

∂θ

∫ π

−π

∣∣∣∣1−
∑

j≥ν
a j(θ)e

i jω
∣∣∣∣
2

g(ω) dω

∣∣∣∣∣∣
θ=θ0

= 0. (8)

Compare (7) and (8). This is exactly our problem if we set

f (ω; θ) =
∣∣∣∣1−

∑

j≥ν
a j(θ)e

i jω
∣∣∣∣
−2
.

Second, we consider the interpolation problem. Let{Xt} be a stationary process with spectral
densityg. Assume that the entire time series has been observed except for the time pointt = 0.
ThusXt, t , 0, have been observed. We would like to estimateX0 by a linear combination of the
observed stochastic variables, that is,X̃0 =

∑
j,0 a j(θ)X j . The function form ofa j(θ) is given in

Hannan(1970). Similar to the prediction problem, the error of interpolation becomes
∫ π

−π

∣∣∣∣1−
∑

j,0

a j(θ)e
i jω

∣∣∣∣
2

g(ω) dω.

We seek theθ minimizing this error, that is, seekθ0 satisfying

∂

∂θ

∫ π

−π

∣∣∣∣1−
∑

j,0

a j(θ)e
i jω

∣∣∣∣
2

g(ω) dω

∣∣∣∣∣∣
θ=θ0

= 0. (9)

Compare (7) and (9). This is exactly our problem if we set

f (ω; θ) =
∣∣∣∣1−

∑

j,0

a j(θ)e
i jω

∣∣∣∣
−2
.

Third, we consider the following smoothing problem. We smooth the trajectory ofXt by

Xt −→
N∑

j=−N

θ jXt+ j .
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Then, similar to the previous problem, the error of this smoothing is expressed as

∫ π

−π

∣∣∣∣1−
N∑

j=−N

θ je
i jω

∣∣∣∣
2

g(ω) dω.

We seek theθ = (θ−N, . . . , θN)′ minimizing this error, that is, seekθ0 satisfying

∂

∂θ

∫ π

−π

∣∣∣∣1−
N∑

j=−N

θ je
i jω

∣∣∣∣
2

g(ω) dω

∣∣∣∣∣∣
θ=θ0

= 0. (10)

Compare (7) and (10). This is exactly our problem if we set

f (ω; θ) =
∣∣∣∣1−

N∑

j=−N

θ je
i jω

∣∣∣∣
−2
.

Like these, our approach based on fitting modelf (ω; θ) which may be different from the true
spectral densityg, has a very wide appllications and potencials for time series analysis.

From (7), we naturally set

m(λt; θ) =
∂

∂θ
tr
{
f (λt; θ)

−1I T(λt)
}

as an estimating function. We use the following empirical likelihood ratio functionR(θ) defined
by

R(θ) = max


T∏

t=1

Twt |
T∑

t=1

wtm(λt; θ) = 0, wt ≥ 0,
T∑

t=1

wt = 1

 . (11)

Then we get the following theorem.

THEOREM 1. Let {X(t)} be the linear process defined in (1) satisfying Assumptions 1 - 3. Then

−2 logR(θ0)
d→ (AN)′(AN) (12)

as T → ∞, whereN have aq-dimensional normal random vector with zero mean vector and

covariance matrixI (identity matrix) andA = Σ
− 1

2
2 Σ

1
2
1 . HereΣ1 is q by q matrix whose(γ1, γ2)

element is

(Σ1)γ1γ2 =
1
π

∫ π

−π
tr

g(ω)
∂ f (ω; θ)−1

∂θγ1

∣∣∣∣∣∣
θ=θ0

g(ω)
∂ f (ω; θ)−1

∂θγ2

∣∣∣∣∣∣
θ=θ0

 dω

+
1
2π

s∑

β1,...,β4=1

" π

−π

∂ f (ω1; θ)β1β2

∂θγ1

∣∣∣∣∣∣
θ=θ0

∂ f (ω2; θ)β3β4

∂θγ2

∣∣∣∣∣∣
θ=θ0

× g4(−ω1, ω2,−ω2)β1...β4 dω1dω2,

andΣ2 is q byq matrix whose(γ1, γ2) element is

(Σ2)γ1γ2 =
1
2π

∫ π

−π
tr

g(ω)
∂ f (ω; θ)−1

∂θγ1

∣∣∣∣∣∣
θ=θ0

g(ω)
∂ f (ω; θ)−1

∂θγ2

∣∣∣∣∣∣
θ=θ0

 dω

+
1
2π

∫ π

−π
tr

g(ω)
∂ f (ω; θ)−1

∂θγ1

∣∣∣∣∣∣
θ=θ0

 tr

g(ω)
∂ f (ω; θ)−1

∂θγ2

∣∣∣∣∣∣
θ=θ0

 dω.
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REMARK 1. Denote the eigenvalues ofA′A bya1, . . . , aq, then we can write

(AN)′(AN) =

q∑

γ=1

Vγ (13)

whereVγ is distributed asΓ(2−1, (2aγ)−1).

Σ1 andΣ2 contain the unknown spectral density matrixg(ω) and the fourth-order spectral
densityg4(−ω1, ω2,−ω2)β1...β4. In practice, we can make appropriate consistent estimatorsΣ̂1 and
Σ̂2 of Σ1 andΣ2 respectively as follows. We can use non-parametric spectral estimatorĝT(ω)
(defined in Section 5) and substitute it intog(ω) in Σ1 andΣ2, then we get the consistent estimator
for the integral of function ofg(ω). It is complicated to give the explicit form of consistent
estimator for the general integrals of fourth-order spectral densityg4(−ω1, ω2,−ω2)β1...β4 in Σ1.
Basically we substitute the fourth-order weighted periodograms into the fourth-order spectral.
The consistent estimators can be found in Keenan (1987 Section 2). Thus we can obtain consistent
estimatorŝΣ1 andΣ̂2. Then, from Slutsky’s theorem it follows that

(ÂN)′(ÂN)
d→ (AN)′(AN) =

q∑

γ=1

Vγ, (14)

where Â = Σ̂
− 1

2
2 Σ̂

1
2
1 . Using this theorem, we can construct confidence regions forθ. First, we

choose a proper threshold valuezα, which isα percentail of estimated distribution of (13) based on
the relation (14). Then we caluculate−2 logR(θ) at numerous points over the range and consutruct
the region

Cα,T = {θ | − 2 logR(θ) < zα}.

REMARK 2. In the scalar case, we can easily seeΣ1 = Σ2. Then the asymptotic distribution of
−2 logR(θ0) becomesχ2

q, which is independent of unknown parameter.

4. Numerical simulation

In this section, we provide applications of Section 3.
First we discuss the estimation of autocorrelations and provide a numerical simulation. Denote

Γ(h) = Cov[X(t), X(t +h)] as the autocovariance matrix ofX with lagh. Let us consider the linear
process difined in (1). If we set

θ = (θ11, . . . , θ1s, . . . . . . , θs1, . . . , θss)
′,

A(θ) =



θ11 · · · θ1s
...

. . .
...

θs1 · · · θss

 ,

and

f (ω; θ) =
(
I − A(θ)eihω)−1(I − A(θ)eihω)−1∗

,

then the condition
∫ π

−π

∂

∂θ
tr
{
f (ω; θ)−1g(ω)

}∣∣∣∣∣
θ=θ0

dω = 0 (15)
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shows

s∑

j=1

[θ0]β1 j

∫ π

−π
g(ω) jβ2 dω =

∫ π

−π
eihωg(ω)β2β1 dω (β1, β2 = 1, . . . , s). (16)

It is well known that the autocovariance and the spectral density have following relation

Γ(h) =

∫ π

−π
eihωg(ω) dω. (17)

From (16) and (17), we obtain

A(θ0)Γ(0) = Γ(h)′ ⇔ A(θ0) = Γ(h)Γ(0)−1.

Hence, we can estimate the quantityΓ(h)Γ(0)−1, which is a generalized quantity of the usual
autocorrelationρ(h) = Γ(h)/Γ(0) in scalar case.

REMARK 3. In this example, we do not assume specified spectral structures and Gaussianity for
the processX(t).

The usual estimator forΓ(h) is

Γ̂(h) =



T−1
T−h∑

t=1

(
X(t) − X̄T

)(
X(t + h) − X̄T

)′ for 0 ≤ h ≤ n− 1,

T−1
T∑

t=−h+1

(
X(t) − X̄T

)(
X(t + h) − X̄T

)′ for − n + 1 ≤ h < 0,

where X̄T =
∑T

t=1 X(t). Therefore we can estimate the quantityΓ(h)Γ(0)−1 by Γ̂(h)Γ̂(0)−1. By
Hosoya and Taniguchi (1982 Theorem 2.2) and Slutsky’s lemma, we can see that

√
T
(
Γ̂(h)Γ̂(0)−1−

Γ(h)Γ(0)−1) have a joint asymptotic normal distribution whose mean is zero and the asymptotic
covariance between

[√
T
(
Γ̂(h)Γ̂(0)−1 − Γ(h)Γ(0)−1)]

β1β2
and

[√
T
(
Γ̂(h)Γ̂(0)−1 − Γ(h)Γ(0)−1)]

β3β4
is

given as

s∑

β′1,...,β
′
6=1

[
Γ(0)β

′
3β2Γ(0)β

′
6β4

s4
σ(h,h)β1β

′
3,β3β

′
6

−Γ(0)β
′
3β2Γ(h)β3β

′
4
Γ(0)β

′
4β
′
5Γ(0)β

′
6β4

s2
σ(h,0)β1β

′
3,β
′
5β
′
6

−Γ(0)β
′
6β4Γ(h)β1β

′
1
Γ(0)β

′
1β
′
2Γ(0)β

′
3β2

s2
σ(0,h)β′2β′3,β3β

′
6

+Γ(h)β1β
′
1
Γ(h)β3β

′
4
Γ(0)β

′
1β
′
2Γ(0)β

′
4β
′
5Γ(0)β

′
3β2Γ(0)β

′
6β4 σ(0,0)β′2β′3,β′5β′6

]
,

where

σ(h1,h2)β1β2,β3β4

= 2π
∫ π

−π

[
g(ω)β1β3g(ω)β2β4 exp{−i(h2 − h1)ω} + g(ω)β1β4g(ω)β2β3 exp{i(h2 + h1)ω}

]
dω

+2π
p∑

α1,...,α4=1

" π

−π
exp{ih1ω1 + ih2ω2}k(ω1)β1α1k(−ω1)β2α2k(ω2)β3α3k(−ω2)β4α4

·ge
4(ω1,−ω2, ω2)α1...α4 dω1dω2.
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andge
4(·, ·, ·)···· is the fourth order spectral density of the process{e(t)}.

Let us consider the scalar case of (1), that is,s = p = 1. Denote the estimator̂Γ(h)/Γ̂(0) by
ρ̂(h). Then, the asymptotic variance of

√
T
(
ρ̂(h) − ρ(h)

)
becomes

V =
1

Γ(0)2
[
ρ(h)2σ(0,0)− ρ(h)

{
σ(0,h) + σ(h,0)

}
+ σ(h,h)

]
(18)

where

σ(h1,h2) = 2π
∫ π

−π
g(ω)2(e−i(h2−h1)ω + ei(h1+h2)ω) dω.

On the other hand, from (??) in Section 6 we can see the corresponding asymptotic variance of
the empirical likelihood method isΣ1, and easily show that

Σ1 =

(
Γ(0)
π

)2

V.

Therefore ifΓ(0) < π, the empirical likelihood method is better than that based on the asymptotics
of
√

T
(
ρ̂(h) − ρ(h)

)
. Furthermore, (18) shows that the asymptotic distribution of sample autocor-

relation depends on the unknown autocorrelationρ(h) while that of empirical likelihood ratio is
independent of it in scalar case (see Remark 2). This point can be also an advantage of empirical
likelihood method.

Next, we give a numerical simulation. Let us consider the following two dimensional AR(1)
model

(
Xt,1

Xt,2

)
=

(
0.3 0
0 0.5

) (
Xt−1,1

Xt−1,2

)
+

(
et,1

et,2

)
, (19)

where (et,1,et,2)′’s are independent and identically distributed as two dimensionalt-distribution
with mean zero and covariance matrixK. Here we assume that innovation part has correlation,
i.e., K is not a diagonal matrix so this setting is not a trivial extension from scalar case even if
the coefficient matrix is diagonal. Theoretically we can estimate theΓ(h)Γ(0)−1 but this matrix is
2×2 and has 4 elements so it is difficult to express its confidence region. Therefore, we especially
set

A(θ) =

(
θ1 0
0 θ2

)

then (15) shows

A(θ0) =

(
Γ11(h)/Γ11(0) 0

0 Γ22(h)/Γ22(0)

)
.

In this situation the true value is 2 dimensional and we can display the confidence region. Denote
θ0 = (θ0,1, θ0,2)′ = (Γ11(h)/Γ11(0),Γ22(h)/Γ22(0))′ = (ρ1(h), ρ2(h))′ = ρ(h). We estimate the auto-
correlation with lagh = 1, that is,θ0 = ρ(1). In AR(1) model (19), it becomes (0.3,0.5)′. Figure
1 shows that 90% confidence region ofθ0 by use of the empirical likelihood method and sample

autocorrelation method with covariance matrix of innovationK1 =

(
5.125 3.5
3.5 2.5

)
, sample size

T = 300. To construct the empirical region, we calculate−2 logR(θ) at numerous points over
the range and gather the points which satisfy{θ | − 2 logR(θ) < z0.90}, wherez0.90 is the 90 %
percentail of the asymprotic distribtion which is expressed in (12). Both regions include the true
value (0.3,0.5)′, but the region using the empirical likelihood method is much narrower than that
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using the sample autocorrelation method. Figure 2 shows that the case of covariance matrix of

innovationK2 =

(
4.27 3.45
3.45 5.18

)
. In this case, both regions are roughly same size but the region

using the sample autocorrelation method does not include the true value (0.3,0.5)′. Simulation
result shows the empirical likelihood method is superior to autocorrelation method.

As the final of this section, we consider a prediction problem. Here is a stock price data of
KDDI (Japanese communication company) from June 13, 2005 to January 30, 2006 and denote
their log returns byX1, . . . ,X155 (X′i s are modified so that their mean is zero). Assume that we
have observedX1, . . . ,X154 and fitting AR(1) model, consider to predictX155. Its predictorX̂155 is
expressed aŝX155 = b̂ X154 whereb̂ is a certain estimator of coefficient of AR(1) model. We plug
in lower and upper bound of̂b in both empirical likelihood case and usual MLE case. In Figure
3, the solid line showsX1, . . . ,X155 and the dashed lines show 99% confidence intervals ofX155

(from the top, MLE’s upper bound, empirical upper bound, empirical lower bound and MLE’s
lower bound). The concrete values of them are provided in Table 2. We obtain the result that the
confidence interval via empirical likelihood approach is narrower than that via MLE’s approach.
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Figure 1: 90% confidence region of (θ1, θ2) with K1.
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Table 1: The values of prediction

lower bound upper bound range
MLE −2.12× 10−3 5.97× 10−3 8.08× 10−3

empirical −1.68× 10−3 5.64× 10−3 7.32× 10−3

X155 = 1.75× 10−4
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Figure 3: 99% confidence interval ofX155
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5. Minimum contrast estimation

In this section, we apply the empilical likelihood method to minimum contrast estimation. The
minimum contrast estimation is based on a disparity measure between the true spectral density
g(ω) ∈ F (F is a space of spectral density matrices) and a certain parametric familyP =

{ f (ω; θ); f (ω; θ) ∈ F , θ ∈ Θ ⊂ Rq} of spectral densities. The disparity measure is defined as
D( f θ, g) =

∫ π

−π K
(
f θ, g, ω

)
dω, whereK(·, ·, ·) is an appropriate holomorphic function which mea-

sures a nearness betweenf (ω; θ) and g(ω). (see, Taniguchi and Kakizawa, 2000, Section 6.2).
Since the trueg(ω) is actually unknown, we introduce a non-parametric window type estimator
ĝT(ω) for g(ω).

We set down the following assumptions.

ASSUMPTION4. W(x) is real, bounded, even, non-negative and satisfies
∫ ∞

−∞
W(x) dx = 1.

ASSUMPTION5. For MT = O(Tα), (1/4 < α < 1/2), the functionWT(ω) = MTW(MTω) can be
expanded as

WT(ω) =
1
2π

∑

l

w

(
l

MT

)
e−ilω,

wherew(x) is a continuous, even function withw(0) = 1, |w(x)| ≤ 1 and
∫ ∞
−∞ w(x)2 dx < ∞, and

satisfies

lim
|x|→0

1− w(x)
|x|2 = κ2 < ∞.

Henceforth we use the following non-parametric spectral estimator

ĝT(ω) =

∫ π

−π
WT(ω − µ)I T(µ) dµ.

REMARK 4. We can also define the discreterized non-parametric estimatorĝdis
T (ω) by

ĝdis
T (ω) =

2π
T

T∑

s=1

WT(ω − λs)I T(λs).

Due to Brillinger (2001, Theorem 5.9.1), the two estimatorĝT(ω) and ĝdis
T (ω) are differ by the

magnitudeOp
(
MTT−1(MT + logT)

)
.

A functionalΠ defined onF is determined by the requirement that for the parametric family
of spectral densitiesP,

D(
f Π(g), g

)
= min

θ∈Θ
D(

f θ, g
)

for everyg ∈ F .

Taniguchi and Kakizawa(2000, Theorem 6.2.3.) showed that the functionalΠ is expanded as

Π( ĝT) = Π(g) − D−1
g

(∫ π

−π
tr[ψ j(ω)

(
ĝT(ω) − g(ω)

)
] dω

)′

j=1,...,q

+ O
(
‖ ĝT(ω) − g(ω) ‖2

)
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where

Dg =

∫ π

−π

∂2

∂θ∂θ′
K
(
f θ, g, ω

)∣∣∣∣∣∣
θ=Π(g)

dω (q× q matrix),

(
ψ j(ω)

)
β1β2

=
∂

∂Zβ1β2

{
∂

∂θ j
K
(
f θ, Z, ω

)∣∣∣∣
θ=Π(g)

}∣∣∣∣∣∣
Z=g(ω)′

(s× smatrix).

Therefore,−D−1
g

(∫ π

−π tr[ψ j(ω)
(
ĝT(ω) − g(ω)

)
] dω

)′
j=1,...,q

can be regarded as the derivative of

functionalΠ, so we set

m(λt; θ) = −D−1
g

(
tr[ψ j(λt) ĝT(λt)]

)′
j=1,...,q

(20)

as an estimating function.
For

∑T
t=1 E[m(λt, θ)] → 0, we assume the following.

ASSUMPTION6. For anyε > 0, we can takeψ j(ω) such that

∫ π

−π
tr[ψ j(ω)g(ω)] dω = O(ε). ( j = 1, . . . , q)

Then, we get the following result.

THEOREM 2. Let {X(t)} be the linear process defined in (1) satisfying Assumptions 1 - 6. Then

−2 logR(Π(g))
d→ (BN)′(BN)

as T → ∞, whereN have aq-dimensional normal random vector with zero mean vector and

covariance matrixI (identity matrix) andB = Σ
− 1

2
4 Σ

1
2
3 whereΣ3 = D−1

g UgD−1
g and Σ4 =

D−1
g V gD−1

g . HereUg is q byq matrix whose(γ1, γ2) element is

(Ug)γ1γ2 =
1
π

∫ π

−π
tr

[
g(ω)ψγ1

(ω)g(ω)ψγ2
(ω)

]
dω

+
1
2π

s∑

β1,...,β4=1

" π

−π

{
ψγ1

(ω)
}
β1β2

{
ψγ2

(ω)
}
β3β4

× g4(−ω1, ω2,−ω2)β1...β4 dω1dω2,

andV g is q byq matrix whose(γ1, γ2) element is

(V g)γ1γ2 =
1
2π

∫ π

−π
tr
[
g(ω)ψγ1

(ω)
]
tr

[
g(ω)ψγ2

(ω)
]

dω

REMARK 5. Assuming thatq/s2 becomes a positive integer, letJ = q/s2 and if we set

K(θ, Z, ω) =
{
log det

(
Z f (ω; θ)−1

)}2

f (ω; θ) = exp
{ J∑

j=1

H( j; θ) cos(jω) + S(ω)
}

whereexp{·} is the matrix exponential,H( j; θ) is ans× smatrices which satisfies

vec{H( j; θ)} = (θs2( j−1)+1, · · · , θs2 j)
′

14



andS(ω) is ans× smatrix which is independent ofθ, then it is not difficult to show
∫ π

−π
tr[ψ j(ω)g(ω)] dω = 0 ( j = 1, . . . ,q).

Hence we can construct a model satisfying Assumption 6.

This method has the following desirable property. For various spectraf (ω; θ), choosing the
function K(·, ·, ·) in D( f θ, g) appropriately we can give non-iterative efficient estimators ofθ in
explicit forms, whereas the (quasi) maximum likelihood estimators procedure requires iterative
methods except for autoregressive models. Moreover, for the following density

g(ω) = (1− δ) f θ(ω) + δhη(ω)

wherehη is a perturbation which is the density with pointmass one atη, a robustness of functional
Π is reported in numerical simulation. In detail, see Chandra and Taniguchi (2006 Theorem 5 and
p.31).
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