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Abstract

In this paper, we propose a local Whittle likelihood estimator for spectral den-
sities of non-Gaussian linear processes and a local Whittle likelihood ratio test
statistic for the problem of testing whether the spectral density of a non-Gaussian
stationary linear process belongs to a parametric family or not. Introducing a lo-
cal Whittle likelihood of a spectral densityfθ(λ) aroundλ, we propose a local
estimatorθ̂ = θ̂(λ) of θ which maximizes the local Whittle likelihood around
λ, and usefθ̂(λ)(λ) as an estimator of the true spectral density. For the testing
problem, we use a local Whittle likelihood ratio test statistic based on the local
Whittle likelihood estimator. The asymptotics of these statistics are elucidated.
It is shown that their asymototic distributions do not depend on non-Gaussianity
of the processes. Because our models include nonlinear stationary time series
models, we can apply the results to stationary GARCH processes. Advantage of
the proposed estimator is demonstrated by a few simulated numerical examples.
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1 Introduction

The study of spectral density functions of stationary processes provides an effective ap-
proach to estimate their underlying models and various methods for testing problems.
There are two ways to estimate the spectral density directly. The one is the parametric
method which is studied in the literature (e.g., Brockwell and Davis (1991)). Also
Hosoya and Taniguchi (1982) constructed a very general framework of the Whittle es-
timator for a class of non-Gaussian linear processes. Further, Giraitis and Robinson
(2001) proposed to use the Whittle estimation procedure for the squared ARCH pro-
cesses. The other is the nonparametric method based on smoothed periodogram (e.g.,
Hannan (1970)).

For i.i.d. observations, Hjort and Jones (1996) proposed a new probability density
estimatorfθ̂(x)(x) which maximizes a local likelihood forfθ aroundx. They showed
that fθ̂(x)(x) has the same asymptotic variance as the ordinary nonparametric kernel
estimator but potentially a smaller bias. For a Gaussian stationary process, Fan and
Kreutzberger (1998) proposed a local polynomial estimator based on the Whittle like-
lihood. Then it was shown that it has advantages over the least-squares based on
log-periodogram.

In this paper, for a class of non-Gaussian linear processes, we introduce a local
Whittle likelihood of the spectral densityfθ(λ) and propose the local Whittle estimator
fθ̂(λ)(λ) around each frequencyλ ∈ [−π, π]. Then we elucidate the asymptotics ofθ̂(λ)
and fθ̂(λ)(λ).

Next we consider the problem of testing whether the spectral density of a class of
stationary processes belongs to a parametric family or not. For this testing problem,
Fan and Yao (2003, Section 9.3.2) and Fan and Zhang (2004) proposed a generalized
likelihood ratio tests based on the Whittle likelihood and a local Whittle estimator.
Then they elucidated the asymptotics of the generalized likelihood ratio tests under
the null hypothesis.

Because the results above rely on Gaussianity of the process concerned, in this
paper, we drop this assumption, and discuss the problem of testing whether the spectral
density of a class of non-Gaussian linear processes belongs to a parametric family
or not. A local Whittle likelihood ratio test is proposed. Then it is shown that the
asymptotic distribution of the test converges in distribution to a normal distribution.

An interesting feature is that the asymptotics of the estimator and test statistic do
not depend on non-Gaussianity of the process. Because we do not assume Gaussianity
of the process concerned, it is possible to apply the results to stationary nonlinear
processes which include GARCH processes. Numerical studies for the local Whittle
likelihood estimator are provided.

It may be noted that Robinson (1995) discussed a semiparametric estimation of
long memory processes, and his approach is a local Whittle likelihood estimation for
long memory parameters around the origin i.e.,λ = 0.
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This paper is organized as follows. Section 2 describes the model, assumptions and
estimatorθ̂(λ). In Section 3, we derive the asymptotics ofθ̂(λ) and fθ̂(λ)(λ). Section
4 introduces test statistic, then the asymptotic distribution of it is derived under the
null hypothesis. Numerical examples for a class of MA(1) processes are provided in
Section 5. They illuminate some interesting features of our approach. The proofs of
the main theorems are relegated to Section 6. Throughout this paper, we denote the set
of all integers byJ, and denote Kronecker’s delta byδ(m, n).

2 Setting

In this section we describe the model, assumptions and estimators. Throughout this
paper we consider a class of non-Gaussian linear processes, which include not only
ARMA but also squared GARCH processes etc .

Assume that{z(n) : n ∈ J} is a general linear process defined by

z(n) =

∞∑

j=0

G( j)e(n− j), n ∈ J, (2.1)

where{e(n)} is a white noise process satisfying

E[e(n)] = 0

E[e(n)e(m)] = δ(m, n)σ2, E[e(n)4] < ∞.
Furtheremore, we assume that

∞∑

j=0

G( j)2 < ∞. (2.2)

Then{z(n)} is a second-order stationary process with spectral density

f (w) =
σ2

2π

∣∣∣∣∣∣∣∣

∞∑

j=0

G( j)e−iw j

∣∣∣∣∣∣∣∣

2

. (2.3)

Henceforth we denote byP the set of all spectral density funcitons of the form (2.3).
Write the autocovariance function ofz(n) asγ(·). Then we assume,

Assumption 1.
∞∑

−∞
n2|γ(n)| < ∞. (2.4)

Letz(1), z(2), . . . , z(N) be an observed stretch of{z(n)}, and denote the periodogram
of {z(n)} by

IN(λ) =
1

2πN

∣∣∣∣∣∣∣
N∑

n=1

z(n)einλ

∣∣∣∣∣∣∣

2

.
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Assumption 2.Let K(·) be a kernel function which satisfies:

(1) K is a real bounded nonnegative even function.

(2)
∫ ∞
−∞ K(t)dt = 1,

∫ ∞
−∞ t2K(t)dt = σ2

k < ∞,
∫ ∞
−∞ s2K2(s)ds< ∞

The condition
∫ ∞
−∞ t2K(t)dt < ∞ implies

lim
x→0

1− k(x)
x2

< ∞ (2.5)

wherek(x) =
∫ ∞
−∞ K(t)eitxdt. Here (2.5) leads to (4.7) in Hannan (1970, p.283) with

hisq = 2.
Let { fθ(λ) : θ ∈ Θ ⊂ Rq} be a parametric family of spectral density functions ofP

whereΘ is a compact set. Here we impose the following assumption.

Assumption 3. fθ(w) is three times continuously differentiable with respect tow and
θ, and there existsδ > 0 such thatfθ(ω) ≥ δ for all ω ∈ [−π, π].

Assumption 4. Forθ1, θ2 ∈ Θ, if θ1 , θ2, then fθ1 , fθ2 on a set of Lebesgue measure.

We define a local distance functionDλ(·, ·) around a given local pointλ for spectral
densities{ ft} by

Dλ( ft, f ) =

∫ π

−π
Kh(λ − w)

{
log ft(w) +

f (w)
ft(w)

}
dw,

whereKh(x) = 1
hK(x/h), andh > 0 is a bandwidth. If we replacef by IN, we call

Dλ( fθ, IN) the local Whittle likelihood function underfθ. Here the misspecification of
fθ for f is allowed.

DefineTλ,h( f ) ∈ Θ by

Dλ( fTλ,h( f ), f ) = min
t∈Θ

Dλ( ft, f ),

Henceforth we sometimes writeTλ,h( f ) asθh(λ) which is called a pseudo-true value of
θ. As an estimator ofθh(λ), we useθ̂h(λ) defined by

θ̂h(λ) = Tλ,h(IN) = arg min
t∈Θ

Dλ( ft, IN).

We can usefθ̂h(λ)(λ) as a local estimator off and call this the local Whittle likelihood
estimator. For simplicity we sometimes writefθh(λ)(λ) as fθh(λ).
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Remark 2.1. Robinson (1995) developed semiparametric estimation of long memory
processes with

f (ω) ∼ Gω1−2H , as ω→ 0+, (2.6)

whereH andG are unknown parameters. Although our model does not include (2.6),
his approach corresponds to the case when

K(x) =

{
1, |x| ≤ 1
0, |x| > 1

(Daniell window)

andλ = 0 in Dλ( ft, IN).

3 Estimating Theory

In this section, we investigate the asymptotics ofθ̂h(λ) and fθ̂h
(λ). Fan and Kreuts-

berger (1998) showed the asymptotics of a local polynomial estimator of the spectral
density based on the Whittle likelihood for Gaussian linear processes. Here we set
down the following assumption.

Assumption 5.
∑∞

j1, j2, j3=−∞ |Qe( j1, j2, j3)| < ∞ whereQe( j1, j2, j3) is the joint fourth
order cumulant ofe(n),e(n + j1), e(n + j2),e(n + j3).

Next we show the asymptotic distribition ofθ̂h(λ) asN→ ∞.

Theorem 3.1. Suppose that the{z(n)} given in (2.1) andK(·) satisfy Assumptions 1-5,
Tλ,h(g) exists uniquely and lies in IntΘ, and that

Mh(λ) =

∫ π

−π
Kh(λ − t)

∂2

∂θ∂θ′
( f −1
θh

(ω) f (ω) + log fθh(ω))dω

is a nonsingular matrix for everyh > 0. Then ifN→ ∞,
√

N
{
θ̂h(λ) − θh(λ)

}
−→ N(0,Mh(λ)−1Ṽh(Mh(λ)−1)τ)

where

Ṽh = 2π
∫ π

−π
Kh(λ − ω)2 ∂

∂θ
f −1
θh

(ω)
∂

∂θ′
f −1
θh

(ω) f 2(ω)dω

+ 2π
∫ π

−π
Kh(λ − ω)Kh(λ + ω)

∂

∂θ
f −1
θh

(ω)
∂

∂θ′
f −1
θh

(ω) f 2(ω)dω

+ 2π
∫ ∫ π

−π
Kh(λ − ω1)Kh(λ + ω2)

∂

∂θ
f −1
θh

(ω1)
∂

∂θ′
f −1
θh

(ω2)Qz(ω1, ω2,−ω2)dω1dω2.

(3.1)
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HereQz(, , ) is the fourth-order cummualnt spectral density of{z(t)}.
Until now, we have assumed thath > 0 is fixed. In what follows we assume thath

is a function ofN satisfying

Assumption 6.

(N
1
2 h)−1 + N

1
5 h −→ 0 as N→ ∞.

The following theorem establishes the asymptotic normality of local Whittle esti-
mator fθ̂h(λ)(λ).

Theorem 3.2. Under Assumptions 1-6,

√
Nh( fθ̂h(λ)(λ) − f (λ))

d−→ N(0,Ψ),

where

Ψ =

{
2π

∫ ∞
−∞ K2(s)ds fθ0(λ)2, (λ , 0)

4π
∫ ∞
−∞ K2(s)ds fθ0(λ)2 (λ = 0).

The proofs of the theorems are relegated to Section 5.

Remark 3.1 In Theorem 3.2, we can see that the asymptotic variance and bias of
the local Whittle estimator depend on onlyf (λ), fθ0(λ) andK. Thus the asymptotic
distribution of the local Whittle estimator does not depend on non-Gaussianity of the
process.

4 Testing Theory

When we estimate the spectral density of an observed time series, it is a significant
problem whether the spectral density is parametric or not. For this, Fan and Zhang
(2004) applies local linear polynomial technique to the log-periodogram of Gaussian
process.

Consider the problem of testing whetherf (λ) belongs to a specific parametric fam-
ily { fθ(·) : θ ∈ Θ} or not, i.e.,

H0 : f (·) = fθ(·) v.s. H1 : f (·) , fθ(·). (4.1)

Although we do not assume Gaussianity of{zt}, the Whittle likelihood function under
H0 is expressed as

l(θ) = −
N∑

k=1

{
log fθ(λk) +

IN(λk)
fθ(λk)

}
, λk = −π + 2πk/N (k = 1, · · · ,N).

6



We call θ̂WH = arg maxθ∈Θ l(θ) the Whittle likelihood estimator ofθ.
In this paper, forH1, we use the following local Whittle likelihood function around

λ ∈ [−π, π]:

l loc(θ) = −
N∑

k=1

{
log fθ(λk) +

IN(λk)
fθ(λk)

}
Kh(λ − λk), (4.2)

whereKh(·) is an appropriate kernel function. Letθ̂LW(λ) = arg maxθ∈Θ l loc(θ), and we
regardfθ̂LW(λ)(λ) as a sort of nonparametric estimator of the spectral densityf (λ). For
the testing problem (4.1), we use the following likelihood ratio test statistic

TLW = l(θ̂WH) − l(θ̂LW(λ))

= −
N∑

k=1

log fθ̂WH
(λk) +

IN(λk)
fθ̂WH

(λk)

 +

N∑

k=1

log fθ̂LW(λk)(λk) +
IN(λk)

fθ̂LW(λk)(λk)



=

N∑

k=1

{
log fθ̂LW(λk)(λk) − log fθ̂WH

(λk) + IN(λk)( fθ̂LW(λk)(λk)
−1 − fθ̂WH

(λk)
−1)

}
.

Actually if TLW > zα, a selected level, we rejectH0, otherwise, accept it.
We derive the asymptotics ofTLW underH0 of (4.1). WriteTLW as

TLW = {l(θ) − l(θ̂LW(λ))} − {l(θ) − l(θ̂WH)}
= TLW,1 − TLW,2.

It is known thatTLW,2 = OP(1) under appropriate regularity conditions (e.g., Taniguchi
and Kakizawa (2000, Section 3.1)). In what follows, it is seen thatTLW,1 is asymptot-
ically of order in probability tending to∞. Hence, in order to derive the asymptotic
distribution ofTLW we have only to derive that ofTLW,1. For this, furthermore, we
impose the following assumption.

Assumption 7. (i) For eachk, k = 2,3, · · · , {z(t)} is kth-order stationary with all of
whose moments exist.
(ii) The joint kth-order cumulantQz( j1, · · · , jk−1) of z(t), z(t + j1), · · · , z(t + jk−1) sat-
isfies

∞∑

j1,··· , jk−1=−∞
(1 + | j l |)|Qz( j1, · · · , jk−1)| < ∞

for l = 1, · · · , k− 1 and anyk, k = 2,3, · · · .
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Then we get the following theorem whose proof is relegated to Section 5

Theorem 4.1.Suppose that Assumptions 1-4 and 6-7 hold. Then, underH0,

σ−1
N (TLW − µN)→d N(0,1),

where

µN =
1
h

[
−2πK(0) + π

∫ ∞

−∞
K(ω)2dω

]

σ2
N =

4π
h

∫ ∞

−∞
K(ω)2dω.

Remark 4.1. It should be noted that the asymptotics ofTLW also do not depend on
non-Gaussianity of the process and spectra. This seems interesting.

5 Numerical Examples

In this section we give the numerical study of the local Whittle likelihood estimator.
In the simulation we compare the MSE of the local Whittle likelihood estimators and
smoothed periodogram estimators with some kernel functions. The MSE of the spec-
tral estimator by use of the maximum likelihood estimator is also compared. Then it is
seen that the local Whittle likelihood estimators are better than the other estimators.

Consider the following MA(1) model:

z(t) = ε(t) + 0.2ε(t − 1) (5.1)

whereε(t) ∼ i.i.d.N(0, 1) and its spectral densityf (λ) is given by

f (λ) =
1
2π

∣∣∣1 + 0.2eiλ
∣∣∣2 . (5.2)

To estimatef (λ), we consider the local Whittle likelihood estimator by fitting a
family of spectral densities{ fθ, θ ∈ Θ} given by

fθ(λ) =
1
2π
|1− θeiλ|−2 =

1
2π

(1− 2θ cosλ + θ2)−1. (5.3)

The integral of local Whittle likelihood is approximated by the sum of Fourier fre-
quencieswn = 2πn/N (1 ≤ n ≤ N). For IN(λ) = 1

2πN |
∑N

n=1 z(n)einλ|2, we calculate
Dλ( fθ, IN) over grid points on (−1,1) for θ to deriveθ̂(λ) for eachλ. We compare per-
formances of the local Whittle estimators with the smoothed periodogram estimators,

f̂ (λ) =

∫ π

−π
Kh(λ − t)IN(t)dt. (5.4)
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By fitting AR(30) model to (5.1) the spectral estimatorfθ̂MLE
(λ) is also compared where

θ̂MLE is the maximum likelihood estimator for autoregressive coefficients. In Table 1
below, based on 5000 times simulations andN = 1000, we provide the values of MSE
of the local Whittle likelihood estimators and the smoothed periodogram estimators
with kernel functions withh = 0.3 (Daniell, Tukey-Hanning, Parzen, Abel) (see Han-
nan (1970), p278-p279).

λ = 1
5π λ = 2

5π λ = 3
5π λ = 4

5π λ = π

fθ̂h(λ)(λ)(Daniell) 0.000289 0.00021 0.000124 0.000088 0.000148
f̂ (λ)(Daniell) 0.00031 0.000234 0.000148 0.000098 0.002447
fθ̂h(λ)(λ)(Tukey-Hanning) 0.000222 0.000163 0.000106 0.000066 0.000098
f̂ (λ)(Tukey-Hanning) 0.000299 0.000110 0.000056 0.000150 0.002019
fθ̂h(λ)(λ)(Parzen) 0.000195 0.000159 0.000086 0.000049 0.000098
f̂ (λ)(Parzen) 0.000549 0.000184 0.000058 0.000154 0.001514
fθ̂h(λ)(λ)(Abel) 0.000231 0.000155 0.00008 0.000071 0.000107
f̂ (λ)(Abel) 0.000726 0.000387 0.000153 0.000117 0.002028
fθ̂MLE

(λ) 0.003121 0.002298 0.001421 0.000837 0.001525

Table 1: MSE of local Whittle likelihood estimators, smoothed periodogram estima-
tors, the spectral estimator by fitting AR(m)

From this table we observe that the local Whittle likelihood estimators are better than
the other estimators.
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