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For a class of time series regression models with long-memory disturbance, we are inter-

ested in estimation of a subset of the regression coefficient vector and spectral parameter of

the residual process when the complementary subset is suspected to be close to0. In this

situation we evaluate the mean square errors of the restricted and unrestricted MLE and

a preliminary test estimator when the complementary parameters are contiguous to zero

vector. The results are expressed in terms of the regression spectra and the residual spectra.

Since we assume long-memory dependence for the disturbance, the asymptotics are much

different from the case of i.i.d. disturbance. Numerical studies elucidate some interesting

features of regression and long-memory structures.
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1 Introduction.

Suppose that one is interested in estimation of a subsetθ1 ≡ (θ1, . . . , θp1)
′ of the concerned pa-

rametersθ1, . . . , θp1+p2 when the complementary subsetθ2 = (θp1+1, . . . , θp1+p2)
′ is suspected to be
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redundant. In such a situation we are led to use the likelihood ratio test LR which testsH : θ2 = 0
v.s. A : θ2 , 0. Then it is natural to introduce a preliminary test (PT) estimatorθ̂PT

1 based on
LR. Let θ̂1 be the maximum likelihood estimator (MLE) ofθ1 underH, and θ̃1 the MLE of θ1

underA. Thenθ̂PT
1 = θ̂1 if LR does not rejectH, andθ̂PT

1 = θ̃1 if LR rejectsH. For independent
observations, a lot of discussions have been addressed for the mean square error (MSE) comparison
of θ̂1, θ̃1 andθ̂PT

1 underAn : θ2 = O(1/
√

n), whenn is the sample size. For diverse review of this
topic, the reader may refer to Saleh (2006).

For dependent observations, Saleh (1992) established fundamental contributions for this prob-
lem. For a Gaussian AR(p1 + p2) model with coefficientsθ1, . . . , θp1+p2, he explicitly evaluated
the MSE’s ofθ̂1, θ̃1 andθ̂PT

1 underAn, and made their comparisons. Maeyama et al (2008) also
discussed such problems for linear processes with mean 0.

Recently much of attention has been paid to time series regression models with long-memory
disturbances (e.g., Taniguchi and Kakizawa (2000)). There are a lot of long-memory phenomena.
It is well known that many important economic variables are aggregates of a very large number
of microvariables. In view of this, Granger (1980) gave an example showing that aggregation of
short-memory process leads a long-memory time series. This paper deals with a class of time se-
ries regression models with regression coefficient vectorβ and fractional ARIMA residual process
depending on the unknown coefficient vectorθ. We are interested in estimation of a subset vec-
tor ρ1 of (θ,β) when the complementary subset vectorρ2 is suspected to be close to0. In this
setting, similarly as the above, we introduce the three estimatiors ˆρ1, ρ̃1 and ρ̂PT

1 of ρ1. Under
An : θ2 = O(1/

√
n), by use of LAN results, we evaluate their MSE’s explicitly in terms of the

regression spectrum, the residual spectra and the innovation density. The regressor may include the
polynomial and harmonic trends, and Gaussianity of the residual process is not assumed, hence,
our model is very general. In our long-memory model, the asymptotic distribution and consistency
order of the regression coefficient estimators are much different from these for short-memory or
i.i.d. model (see, Lemma 1 and Example 1).

We evaluate the MSE’s of three estimators by numerical studies in various settings. In the
polynomial regression model and harmonic regression model, we can see that ˆρPT

1 is relatively
robuster with respect to perturbation of parameters than the other two estimators.

The paper is organized as follows. Section 2 introduces our time series regression model, and
describes the LAN theorem. Section 3 addresses the problem of preliminary test estimator, and
introduces ˆρ1, ρ̃1 and ρ̂PT

1 . By use of LAN theorem, Section 4 derives the MSE’s of the three
estimators. Section 5 provides some numerical studies and elucidates the features of MSE’s of
three estimators.

2 Settings.

Suppose thatY n = (Y1, . . . ,Yn)′ is generated by

Yt = X ′
t β + et, t ∈ Z, (2.1)
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where{Xt = (Xt1, . . . ,Xtb)′} is a sequence ofb-dimensional nonrandom regressors,β = (β1, . . . , βb)′

is the unknown regression coefficient and{et} is a stationary long-memory process generated by the
fractional ARIMA (FARIMA(p, d,q)) model :

p∑

k=0

φkBk(1− B)det =

q∑

k=0

ηkBkεt, t ∈ Z, φ0 = η0 = 1. (2.2)

HereB stands for the lag operator and

θ = (θ1, . . . , θp+q+1)′ = (d, φ1, . . . , φp, η1, . . . , ηq)′

is the unknown parameter of the residual process, and{εt} is an i.i.d. innovation process with
nonvanishing densityg(·).

Initially we make the following assumptions.

(A1) The characteristic polynomialsφ(z) ≡ ∑p
k=0 φkzk andη(z) ≡ ∑q

k=0 ηkzk have no roots within
the unit discD ≡ {z ∈ C : |z| ≤ 1}.

(A2) 0 < d < 1/2, andΘ = {θ : θ satisfies (A2) and (A3)}.

(A3) g = g(·) satisfies that
∫

zg(z) dz = 0, σ2 ≡
∫

z2g(z) dz < ∞, andg is absolutely continuous
with a.e. derivativeg′ satisfying

0 < F (g) ≡
∫

[g′(z)/g(z)]2g(z) dz< ∞,

and
∫

[g′(z)/g(z)]4g(z) dz< ∞.

It is seen that (A3) impliesE[g′(εt)/g(εt)] = 0, and, from (A1),ψ(z) ≡ φ(z)η(z)−1(1 − z)d can be
expanded as the absolutely convergent sum :

ψ(z) =

∞∑

k=0

ψkz
k, z ∈ D. (2.3)

Hence,{et} has the AR(∞) representation

∞∑

k=0

ψket−k = εt, t ∈ Z. (2.4)

The spectral density of{et} is expressed as

f„(λ) =
σ2

∣∣∣∑q
k=0 ηkeikλ

∣∣∣2

2π
∣∣∣1− eiλ

∣∣∣2d ∣∣∣∑p
k=0 φkeikλ

∣∣∣2
. (2.5)
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On the regressor{Xt}, we impose a sort of Grenander’s conditions [e.g., Hannan (1970)]. Let-
ting

an
k j(h) =


∑n−h

t=1 Xt+h,kXt j , h = 0,1, . . . ,∑n
t=1−h Xt+h,kXt j , h = −1,−2, . . . ,

the following conditions are assumed to hold:

(G1) an
kk(0)→ ∞ asn→ ∞, k = 1, . . . ,b.

(G2) limn→∞ X2
n+1,k/a

n
kk(0) = 0, k = 1, . . . ,b.

(G3) limn→∞ an
k j(h)/{an

kk(0)an
j j (0)}1/2 = rk j(h) exists for everyk, j = 1, . . . ,b andh ∈ Z. Denote

by Γ(h) theb× b matrix {rk j(h)}.

(G4) Γ(0) is nonsingular.

Then there exists a Hermitian matrix functionM (λ) = {M jk(λ); j, k = 1, . . . ,b} with positive
semidefinite increments such that

Γ(h) =

∫ π

−π
eihλdM (λ) (2.6)

We further make the following assumptions.

(G5) an
ll (0) = O(n1+α) for someα ≥ 0, and

max
1≤t≤n

X2
tl

an
ll (0)

= O(n−δ), l = 1, . . . ,b,

for someδ > 1− 2d.

(G6) (i) Xtk = tk−1, k = 1, . . . ,b1, 0 ≤ b1 ≤ b, which impliesMkk(0+)−Mkk(0) = 1, k = 1, . . . ,b1,

(ii) 0 < Mkk(0+) − Mkk(0) < 1, k = b1 + 1, . . . ,b2,

(iii) Mkk(0+) − Mkk(0) = 0, k = b2 + 1, . . . ,b.

LetX·k ≡ (X1k, . . . ,Xnk)′, k = 1, . . . ,b, andDn ≡ diag{n−d‖X·1‖, . . . ,n−d‖X·b1‖, ‖X·b1+1‖, . . . , {X·b‖},
where‖ · ‖ denotes the Euclidean norm. We introduce the local sequences

θ(n) = θ + n−1/2h, β(n) = β + D−1
n k, (2.7)

whereh ∈ Rp+q+1, k ∈ Rb, andu = (h′,k′)′ belongs to some open subsetH of Rp+q+b+1. The
sequence of statistical experiments is

En = {RZ ,BZ , {P(n)
„,˛

: (θ,β) ∈ Θ ×Rb}}, n ∈N ,
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whereBZ denotes the Borelσ-field onRZ andP(n)
„,˛

the joint distribution of{εs, s≤ 0;Y1, . . . ,Yn}
characterized by the parameter value (θ,β) and the innovation densityg. Denote byH(n)

g (θ,β) the
sequence of simple hypotheses{{P(n)

„,˛
},n ∈N }. We write the log-likelihood ratio forH(n)

g (θ(n),β(n))

with respect toH(n)
g (θ,β) as

Λ
(n)
g (θ,β) ≡ log

dP(n)
„(n),˛(n)

dP(n)
„,˛

. (2.8)

To describe fundamental results we need the notation :

W (θ) =
1
2π

 W1(θ) 0
0 W2(θ)

 , (b× b−matrix) (2.9)

whereW1(θ) is theb1 × b1-matrix with (k, j)th entry,

Γ(k− d)Γ( j − d){(2k− 1)(2j − 1)}−1/2

(σ2/2π)|η(1)/φ(1)|2Γ(k− 2d)Γ( j − 2d)(k + j − 1− 2d)
, (2.10)

andW2(θ) is the (b− b1) × (b− b1)-matrix with (k, j)th entry,
∫ π

−π
f„(λ)−1dMk+b1, j+b1(λ).

The Fisher information matrix of the residual process is given by

Q(θ) =
1
4π

∫ π

−π

∂

∂θ
log f„(λ) · ∂

∂θ′
log f„(λ) dλ. (2.11)

The following lemma is due to Hallin, Taniguchi, Serroukh and Choy (1999).

LEMMA 1. (LAN result) Suppose that (A1) – (A3) and (G1) – (G6) hold. Then the sequence
of experimentsEn, n ∈N , is locally asymptotically normal (LAN). That is,

(i) For all θ andβ, the log-likelihood ratio (2.8) admits, underH(n)
g (θ,β), asn→ ∞, the asymp-

totic expansion

Λ
(n)
g (θ,β) = (h′,k′)∆(n)

g (θ,β) − 1
2

[
σ2F (g)h′Q(θ)h + F (g)k′W (θ)k

]
+ op(1), (2.12)

where

∆
(n)
g (θ,β) ≡ n−1/2


∑n

t=1
g′(zt)
g(zt)

∑t−1
ν=1

∂
∂„ (ψν)et−ν

−D−1
n

∑n
t=1

g′(zt)
g(zt)

∑t−1
ν=1ψνXt−ν

 (2.13)

and

zt = zt(θ,β) ≡
t−1∑

k=0

ψk(Yt−k −X ′
t−kβ).
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(ii) UnderH(n)
g (θ,β),

∆
(n)
g (θ,β)

d→ N(0,Ψg), (2.14)

where

Ψg = Ψg(θ,β) ≡
 σ

2F (g)Q(θ) 0
0 F (g)W (θ)

 . (2.15)

3 The problems.

In this section we discuss estimation of the time series regression model (2.1) with long-memory
disturbances when the complementary subset of (θ,β) is suspected to be redundant. Concretely,
for the partitionsθ = (θ′1,θ

′
2)′ andβ = (β′1,β

′
2)′, we are now interested in the estimation ofθ1 and

β1 whenθ2 andβ2 are suspected to be close to0 (zero vector). In such a situation it is natural to
consider an estimatior based on a test for the hypothesis

H : θ2 = 0 andβ2 = 0 v.s. A : θ2 , 0 or β2 , 0 (3.1)

For the stretch (Y1, . . . ,Yn,X1, . . . ,Xn), we introduce the following quasi log-likelihood:

ln(θ,β) =

n∑

t=1

logg


t−1∑

ν=0

ψν(Yt−ν −X ′
t−νβ)

 , (3.2)

whereψν = ψν(θ) is given in (2.3) and (2.4), andθ = (θ1,θ2) andβ = (β1,β2). Define the
unrestricted quasi MLE (UQMLE) ofθ andβ by

(θ̃1, θ̃2, β̃1, β̃2) = arg max
(„1,„2,˛1,˛2)

ln(θ,β), (3.3)

and the restricted quasi MLE (RQMLE) ofθ1 andβ1 by

(θ̂1, β̂1) = arg max
(„1,˛1)

ln((θ1,0), (β1,0)). (3.4)

In what follows we permutate the components ofθ andβ, and write

ρ =



ρ1


}
a1 + b1

· · ·
ρ2

}
a2 + b2

=



θ1


}
a1

β1

}
b1

· · ·
θ2

}
a2

β2

}
b2

and

l̃n(ρ) = ln(θ,β),
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wherea1 + a2 = p + q + 1, b1 + b2 = b. We also rewrite the fundamental quantitiesΛ
(n)
g (θ,β),

∆
(n)
g (θ,β) andΨg = Ψg(θ,β) in Lemma 1 as̃Λ(n)

g (ρ), ∆̃
(n)
g (ρ) andΨ̃g = Ψg(ρ) corresponding to

the permutated vectorρ, respectively.
Now let us return the problem of testing (3.1):

H : ρ2 = 0 v.s. A : ρ2 , 0. (3.5)

For this we use the following quasi log-likelihood ratio test

Ln = 2
[
l̃n(ρ̃1, ρ̃2) − l̃n(ρ̂1,0)

]
, (3.6)

where

ρ̃1 =

 θ̃1

β̃1

 , ρ̃2 =

 θ̃2

β̃2

 and ρ̂1 =

 θ̂1

β̂1

 . (3.7)

Partition∆̃
(n)
g (ρ) andΨ̃g corresponding toρ1 andρ2, and write them as

∆̃
(n)
g (ρ) =



Z1


}
a1 + b1

· · ·
Z2

}
a2 + b2

, (3.8)

Ψ̃g =

a1+b1︷︸︸︷ a2+b2︷    ︸︸    ︷


F11
... F12



}
a1 + b1

· · · · · ·
F21

... F22

}
a2 + b2

. (3.9)

Similarly as in Taniguchi and Amano (2008) we can see that, underH,

Ln = (Z2 − F21F
−1
11 Z1)′F −1

22.1(Z2 − F21F
−1
11 Z1) + op(1), (3.10)

whereF22.1 = F22− F21F
−1
11 F12. Since

Z2 − F21F
−1
11 Z1

d→ N(0,F22.1), underH, (3.11)

we have

Ln
d→ χ2

a2+b2
, underH. (3.12)

Then we can discuss the estimation problem ofρ1 whenρ2 is suspected to be close to0. In this
case it is natural to introduce the preliminary test quasi maximum likelihood estimator (PTQMLE)

ρ̂PT
1 ≡ ρ̃1 − (ρ̃1 − ρ̂1)I {Ln ≤ χ2

a2+b2
(α)}, (3.13)

whereI {·} is the indicatior function, andχ2
a2+b2

(α) is theα-level critical value ofχ2
a2+b2

. The impli-
cation ofρ̂PT

1 is if the testLn acceptH : ρ2 = 0, thenρ̂PT
1 = ρ̂1 (restricted estimatior), and if not

so, then ˆρPT
1 = ρ̃1 (unrestricted estimatior).
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4 Asymptotic Theory for Estimators.

This section discusses the asymptotics of ˆρ1, ρ̃1 andρ̂PT
1 whenρ2 is contiguous to0. Let

Hn ≡

p+q+1︷          ︸︸          ︷ b︷︸︸︷


√
n 0




p + q + 1. . . 0

0
√

n

0 Dn

}
b

, (4.1)

which is a standardizing matrix for estimators of (θ,β). Permutating the diagonal elements ofHn

so that the resulting matrix becomes the standardizing matrix for the parameter (ρ1,ρ2). Write it as

H̃n ≡
a1+b1︷︸︸︷ a2+b2︷︸︸︷ F̃n 0


}
a1 + b1

0 G̃n

}
a2 + b2

(4.2)

whereF̃n andG̃n correspond to the parametersρ1 andρ2, respectively.
Consider the problem of testing

H : ρ2 = 0, v.s. An : ρ2 = G̃−1
n · ξ, (4.3)

whereξ ∈ Ra2+b2. Recalling the discussion of Section 3, it is seen that the log-likelihood ratio
Λ̃

(n)
g (ρ) betweenH andAn has the stochastic expansion

Λ̃
(n)
g (ρ) = ξ′Z2 − 1

2
ξ′F22ξ + op(1) underH. (4.4)

Since the asymptotic covariance betweenZ2−F21F
−1
11 Z1 andΛ̃

(n)
g (ρ) is given byF22.1ξ, LeCam’s

third lemma implies that, underAn,

Ln
d→ χ2

a2+b2
(ξ′F22.1ξ), (4.5)

whereχ2
a2+b2

(ξ′F22.1ξ) is the noncentralχ2-distribution with (a2 + b2) degrees of freedom and
noncentralityξ′F22.1ξ. Next we derive the contiguous asymptotic distribution ofF̃n(ρ̂1 − ρ1).
Since, underH,

F̃n(ρ̂1 − ρ1) = F −1
11 Z1 + op(1), (4.6)

and the asymptotic covariance betweenF −1
11 Z1 and Λ̃

(n)
g (ρ) is F −1

11 F12ξ, hence, LeCam’s third
lemma yields

F̃n(ρ̂1 − ρ1)
d→ N(F −1

11 F12ξ,F
−1
11 ), underAn. (4.7)
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UnderH, F −1
11 Z1 andZ2−F21F

−1
11 Z1 are asymptotically independent, which implies thatF̃n(ρ̂1−

ρ1) andLn are so. Hence it follows that, underAn,

lim
n→∞P[F̃n(ρ̂1 − ρ1)

(v)≤ x, Ln < χ
2
a2+b2

(α)]

= ΦF −1
11

(x − F −1
11 F12ξ) Chi(a2+b2)[χ

2
a2+b2

(α); ξ′F22.1ξ], (4.8)

wherex ∈ Ra1+b1,
(v)≤ implies componentwise inequality≤, ΦF −1

11
(·) is the (a1 + b1)-dimensional

normal distribution function with mean0 and covariance matrixF −1
11 andChi(a2+b2)[ · ; ξ′F22.1ξ] is

the distribution function ofχ2
a2+b2

(ξ′F22.1ξ). Next we derive the contiguous asymptotic distribution
of F̃n(ρ̃1 − ρ1). Note that

Ψ̃−1
g =

 F −1
11 + F −1

11 F12F
−1
22.1F21F

−1
11 −F −1

11 F12F
−1
22.1

−F −1
22.1F21F

−1
11 F −1

22.1

 . (4.9)

Similarly as in Taniguchi and Amano (2008), we observe that, underH,
 F̃n(ρ̃1 − ρ1)

G̃n(ρ̃2 − ρ2)

 = Ψ̃−1
g

 Z1

Z2

 + op(1), (4.10)

leading to, together with (4.9),

F̃n(ρ̃1 − ρ1) = F −1
11 Z1 − F −1

11 F12F
−1
22.1{Z2 − F21F

−1
11 Z1} + op(1)

= X0 − F −1
11 F12Z0 + op(1), (say). (4.11)

LeCam’s third lemma leads to
 X0

Z0

 ∼ N


 F −1

11 F12ξ

ξ

 ,
 F −1

11 0
0 F −1

22.1




underAn. Then the asymptotic mean ofX0 − F −1
11 F12Z0 is equal to0 underAn. Hence we may

rewriteX0 − F −1
11 F12Z0 asX − F −1

11 F12Z, where
 XZ

 ∼ N


 0

0

 ,
 F −1

11 0
0 F −1

22.1




underAn. Noting the correspondenceX ↔ x andZ ↔ z, we have, underAn,

lim
n→∞P[F̃n(ρ̃1 − ρ1)

(v)≤ x, Ln ≥ χ2
a2+b2

(α)]

=

∫

{z:(z+‰)′F22.1(z+‰)≥χ2
a2+b2

(α)}
ΦF −1

11
(x + F −1

11 F12z) dΦF −1
22.1

(z). (4.12)

From (4.8) and (4.12), the contiguous asymptotic distribution ofF̃n(ρ̂PT
1 − ρ1) is (4.8)+ (4.12).

We evaluate the mean square error (MSE) of standardized estimator (∗) by M(∗) ≡ E[tr{(∗)(∗)′}].
From the above arguments, Saleh (1992) and Maeyama et al (2008), we have,
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Theorem 1. Under (A1)-(A3), (G1)-(G6), it holds that

(i) M(ρ̂1) = trF −1
11 + ξ′F21F

−2
11 F12ξ, (4.13)

(ii ) M(ρ̃1) = trF −1
11 + tr{F −1

11 F12F
−1
22.1F21F

−1
11 }, (4.14)

(iii ) M(ρ̂PT
1 ) = trF −1

11 + tr{F −1
11 F12F

−1
22.1F21F

−1
11 }{1−Chi(a2+b2+2)[χ

2
a2+b2

(α); ξ′F22.1ξ]}
+(ξ′F21F

−2
11 F12ξ){2Chi(a2+b2+2)[χ

2
a2+b2

(α); ξ′F22.1ξ]

−Chi(a2+b2+4)[χ
2
a2+b2

(α); ξ′F22.1ξ]}. (4.15)

5 Numerical Studies.

In this section we investigate the MSE properties of ˆρ1, ρ̃1 andρ̂PT
1 numerically.

Example 1 (Polynomial regression model). Recall our model (2.1):

Yt = (Xt1, . . . ,Xtb)β + et, (5.1)

where {et} ∼ FARIMA(p,d,q) with spectral densityf„(λ) given in (2.5). Suppose thatβ =

(β′b1
,β′b2

)′ is unknown, the structure off„(λ) is known, andXtk = tk−1, k = 1, . . . ,b1 + b2. We
are now interested in estimation ofρ1 = βb1 whenρ2 = βb2 is suspected to be close to0. In this

case,F̃n = diag
(
· · · , nk−1/2√

2k−1
, · · ·

)
, k = 1, . . . ,b1, (e.g. Taniguchi and Kakizawa (2000, p348)). From

(2.10) it is seen that the matrix̃Ψg becomes

k

j



...
· · · Γ(k−d)Γ( j−d){(2k−1)(2j−1)−1/2}

σ2|η(1)/φ(1)|2Γ(k−2d)Γ( j−2d)(k+ j−1−2d) · · ·
...

× F (g) =

 F11 F12


}
b1

F21 F22

}
b2

.

Whenβ2 = G̃−1
n ξ, Theorem 1 provided MSE’s for the three estimators.

In the following, we see the magnitudes of MSE’s of the three estimators in various cases.
Suppose thatp = q = 1,φ1 = 0.4 andη1 = 0.2 in the model (2.2) and thata1 = a2 = 0, b1 = b2 = 1,
α = 0.05,σ2 = 1 andg is the Gaussian density function. Figures 1 and 2 show the magnitudes of
MSE’s of the three estimators as functions of 0< ξ < 10 whend = 0.1 andd = 0.4, respectively.
Whenξ is samll, the RQMLE is the best and UQMLE is the worst, but whenξ becomes larger,
the RQMLE becomes worst and the UQMLE and the PTQMLE has smaller MSE’s than that of
RQMLE. From this figure, we can see that the PTQMLE has moderate MSE than the other two
estimators.

Example 2 (Harmonic regression model). In the model (5.1), suppose thatXtk = cosvkt,
where 0< v1 < · · · < vb1+b2 < π, and that the long memory parameterd is equal to 0. Here we are
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interested in estimation ofρ1 ≡ (θ′a1
,β′b)′ whenρ2 ≡ θa2 is suspected to be close to0. In this case,

a1︷      ︸︸      ︷ b︷                  ︸︸                  ︷
F̃n = diag(

√
n, . . . ,

√
n,
√

n/
√

2, . . . ,
√

n/
√

2).

From Lemma 1, it is seen that

Ψ̃g

=



σ2F (g)
4π

∫ π

−π
∂ log f„(λ)
∂„a1

∂ log f„(λ)
∂„′a1

dλ 0 σ2F (g)
4π

∫ π

−π
∂ log f„(λ)
∂„a1

∂ log f„(λ)
∂„′a2

dλ

0 F (g)
2π

∫ π

−π f„(λ)−1dM (λ) 0
σ2F (g)

4π

∫ π

−π
∂ log f„(λ)
∂„a2

∂ log f„(λ)
∂„′a1

dλ 0 σ2F (g)
4π

∫ π

−π
∂ log f„(λ)
∂„a2

∂ log f„(λ)
∂„′a2

dλ



=

 F11 F12


}
a1 + b

F21 F22

}
a2

(5.2)

Whenθa2 = G̃−1
n ξ, Theorem 1 provided MSE’s for the three estimators.

Figure 3 shows the magnitudes of MSE’s of the three estimators as functions 0.5 < θ2 < 1. The
other parameters are fixed asξ = 1, θ1 = 0 andν1 = π/3. Whenθ2 is near from 0, the RQMLE
is the best and UQMLE is the worst, but whenθ2 is near from 1, the RQMLE becomes worst and
the UQMLE and the PTQMLE has smaller MSE’s. From this figure, we can conclude that the
PTQMLE is moderate and hardly affected by the parameterθ2 while the RQMLE and UQMLE
is sensitive. Therefore, we can conclude that PTQMLE is robust with respect to perturbation of
parameterθ2.
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Figure 1: MSEs in the case ofd = 0.1
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Figure 2: MSEs in the case ofd = 0.4
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Figure 3: MSEs as functions of 0.5 < θ2 < 1.0
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