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Short title
Preliminary test for long memory

For a class of time series regression models with long-memory disturbance, we are inter-
ested in estimation of a subset of the regressioffficdent vector and spectral parameter of

the residual process when the complementary subset is suspected to be 6lobettus

situation we evaluate the mean square errors of the restricted and unrestricted MLE and
a preliminary test estimator when the complementary parameters are contiguous to zero
vector. The results are expressed in terms of the regression spectra and the residual spectra.
Since we assume long-memory dependence for the disturbance, the asymptotics are much
different from the case of i.i.d. disturbance. Numerical studies elucidate some interesting
features of regression and long-memory structures.
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1 Introduction.

Suppose that one is interested in estimation of a sulyset (64, ...,6p,)" of the concerned pa-
rametersy, . .., 0p,+p, When the complementary subgt= (0p,+1,...,0p,+p,)’ IS SUSpected to be
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redundant. In such a situation we are led to use the likelihood ratio test LR whicldtesls = 0

v.s. A: 6> # 0. Then it is natural to introduce a preliminary test (PT) estiméer based on

LR. Let ; be the maximum likelihood estimator (MLE) & underH, andé, the MLE of 6,

underA. ThenT = @, if LR does not reject, and@™ = 8, if LR rejectsH. For independent
observations, a lot of discussions have been addressed for the mean square error (MSE) comparison
of 81, 81 andP™ underA, : 8, = O(1/ yn), whenn is the sample size. For diverse review of this

topic, the reader may refer to Saleh (2006).

For dependent observations, Saleh (1992) established fundamental contributions for this prob-
lem. For a Gaussian AR( + p2) model with codicients6s,...,60p,.p,, he explicitly evaluated
the MSE's ofé1, 6, andéfT underA,, and made their comparisons. Maeyama et al (2008) also
discussed such problems for linear processes with mean 0.

Recently much of attention has been paid to time series regression models with long-memory
disturbances (e.g., Taniguchi and Kakizawa (2000)). There are a lot of long-memory phenomena.
It is well known that many important economic variables are aggregates of a very large number
of microvariables. In view of this, Granger (1980) gave an example showing that aggregation of
short-memory process leads a long-memory time series. This paper deals with a class of time se-
ries regression models with regressionfieent vectord and fractional ARIMA residual process
depending on the unknown dieient vectord. We are interested in estimation of a subset vec-
tor p; of (8, 3) when the complementary subset vegieris suspected to be close @ In this
setting, similarly as the above, we introduce the three estimatigrg, “and p*fT of p1. Under
A, : 6, = O(1/+/n), by use of LAN results, we evaluate their MSE’s explicitly in terms of the
regression spectrum, the residual spectra and the innovation density. The regressor may include the
polynomial and harmonic trends, and Gaussianity of the residual process is hot assumed, hence,
our model is very general. In our long-memory model, the asymptotic distribution and consistency
order of the regression cfigient estimators are muchftérent from these for short-memory or
i.i.d. model (see, Lemma 1 and Example 1).

We evaluate the MSE'’s of three estimators by numerical studies in various settings. In the
polynomial regression model and harmonic regression model, we can saﬁfh'm rélatively
robuster with respect to perturbation of parameters than the other two estimators.

The paper is organized as follows. Section 2 introduces our time series regression model, and
describes the LAN theorem. Section 3 addresses the problem of preliminary test estimator, and
introducespi, p1 and p*fT. By use of LAN theorem, Section 4 derives the MSE’s of the three
estimators. Section 5 provides some numerical studies and elucidates the features of MSE’s of
three estimators.

2 Settings.
Suppose tha¥™" = (Y1,...,Y,) is generated by

Y= X/B+e, teZ, 2.1)



where{ X; = (X1, ..., Xw)'} is a sequence dFdimensional nonrandom regress@ss (81, . ..,8)
is the unknown regression dfieient andg} is a stationary long-memory process generated by the
fractional ARIMA (FARIMA(p, d, g)) model :

p q
D oBU-Bla=) nBa teZ go=no=1 (22)
k=0 k=0

HereB stands for the lag operator and
0= (91, cee 79p+q+1), = (d, #1, .- ’¢p77717 s ,Uq),

is the unknown parameter of the residual process, {afids an i.i.d. innovation process with
nonvanishing densitg(-).
Initially we make the following assumptions.

(Al) The characteristic polynomialqz) = ZE:O HZ andn(2) = ZEZO nZ have no roots within
the unitdiscD = {ze C : |4 < 1.

(A2) 0<d<1/2,and® = {0 : 0 satisfies A2) and A3)}.

(A3) g = g(-) satisfies thatf zgz)dz = 0, 0 = [Zg(2) dz < o, andg is absolutely continuous
with a.e. derivativey’ satisfying

0<F(g) = f [0'(2)/9(21%9(2) dz < oo,
and

f [9(2)/9(2]*9(2) dz < .

It is seen that (A3) implie€[d (&)/9(&)] = 0, and, from (A1)¥(2) = ¢(2n(2~1(1 - 29 can be
expanded as the absolutely convergent sum :

V@ = nd, zeD. (2.3)
k=0

Hence e} has the AR¢) representation

[

Ywex=a teZ (2.4)
k=0

The spectral density d&} is expressed as

02|39 p eik/lz
oy - — Azl
2”|1_em| |Zkzo¢ke'k/l|

(2.5)
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On the regressdrXi}, we impose a sort of Grenander’s conditions [e.g., Hannan (1970)]. Let-
ting

a(h) = SN XeniXe,  h=0.1,...,
) Z?:l—h Xt+h,kxtj, h= -1, —2, ey

the following conditions are assumed to hold:
(G1) &, (0) » c0asn— oo, k=1,...,h.
(G2) limpse Xﬁﬂ’k/ak”k(O) =0,k=1,...,h.

(G3) limn_w af;(h)/{ag, (0)a) (0)}Y2 = ry;j(h) exists for evenk, j = 1,...,bandh € Z. Denote
by I'(h) theb x b matrix {rg;j(h)}.

(G4) 1'(0) is nonsingular.

Then there exists a Hermitian matrix functiddd (1) = {Mk(2); .k = 1,...,b} with positive
semidefinite increments such that

I'(h) = f éNdnr(a) (2.6)
We further make the following assumptions.

(G5) &(0) = O(n***) for somea > 0, and

max Xi =0o(n™®), I=1...,b
1<t<n &}(0) ’ B

for somes > 1 - 2d.

(G6) (i) Xu =t<1 k=1,...,by,0< by <b, whichimpliesMi(0*)-M(0) =1, k=1,...,Dby,
(ii) 0< Mkk(o+) - Mkk(O) <1, k=bi+1,...,b,
(i) Mi(0%) — Mi(0) =0, k=bp+1,...,b.

Let Xk = Xk, .-, Xnk)', K= 1,..., b, andDy, = diagin~ I X ll, . .., Y X, 1, 1 X g alls - - -, { X 1},
where|| - || denotes the Euclidean norm. We introduce the local sequences

0" =0 +n2n, BO =3+ Dk, (2.7)

whereh € RP*! ke RP, andu = (R, k’)’ belongs to some open subgétof RP* 4P+l The
sequence of statistical experiments is

& ={R?,B87,(P}) :(0,8)c ®x R}, neN,



whereBZ denotes the Boret-field on RZ and ng)ﬁ the joint distribution ofles, s < 0; Y1, ..., Yn}
characterized by the parameter val@e®) and the innovation density. Denote byl—|é”)(0, B) the
sequence of simple hypotheseéf;)ﬁ}, n e IN}. We write the log-likelihood ratio foH{" (6™, 3™)
with respect tcH{" (8, 3) as

n
[ ONCIQ)

n
dpg’ ,
To describe fundamental results we need the notation :

1 ( W1(0) 0
2l 0 Wy(0)

A6, 8) = log (2.8)

W(0) = ) (b x b — matrix) (2.9)

whereW(0) is theb; x bi-matrix with (k, j)th entry,

P(k - d)(j - d)i(2k - 1)(2j - )
(o2/20)l(1)/$(DPT(k - 20)1(] - 2d)(K+ | — 1 - 2d)

andW5(0) is the p — by) x (b — by)-matrix with (, j)th entry,

(2.10)

f o () dMysby by ().

The Fisher information matrix of the residual process is given by

1 (™ 0
Q0) = In [n 30 log fg(2) - 50 log fg(1) dA. (2.11)

The following lemma is due to Hallin, Taniguchi, Serroukh and Choy (1999).

LEMMA 1. (LAN result) Suppose that (Al) — (A3) and (G1) — (G6) hold. Then the sequence
of experiment&y,, n € N, is locally asymptotically normal (LAN). That is,

(i) Forall @ and 3, the log-likelihood ratio (2.8) admits, undet{’(6, 3), asn — o, the asymp-
totic expansion
’ ’ 1 ’ ’
A6, 8) = (0, k)AL (6, 8) - > |?F (@h'QO)h + F(Q)k' W (B)k| + 0p(1). (2.12)
where
PINIE T M (719

A(n)(a B) = n1/2 -
g ’ - -
_Dnl Z?:]_ %((ZZ:)) ZE,:Jj_ WvXt—v

(2.13)

and

=1

2=2(0.8) = ) wi(Yek - X{,0).
k=0



(i) UnderH{" (9, 3),

AP, 8) S N, Ty), (2.14)
where
B ([ o*F(9)Q(6) 0
Wy = Uy(0.0) = ( o FOW®) ] (2.15)

3 The problems.

In this section we discuss estimation of the time series regression model (2.1) with long-memory
disturbances when the complementary subse®g8) is suspected to be redundant. Concretely,
for the partition®d = (67, 0,)" andB = (81, 3;)’, we are now interested in the estimatiortgfand

B1 when@, and3, are suspected to be close@dzero vector). In such a situation it is natural to
consider an estimatior based on a test for the hypothesis

H: 6,=0and@3,=0 v.s. A: 6,#00r3,#0 (3.1)

For the stretch\(, ..., Yy, X1, ..., Xy), we introduce the following quasi log-likelihood:

n =1
In(6.8) = ), logg {Z U (Yeoy - X{_Vﬁ)} : (3.2)

t=1 v=0

wherey, = ,(0) is given in (2.3) and (2.4), and = (01,62) and3 = (B1,32). Define the
unrestricted quasi MLE (UQMLE) a# and3 by

01,05, 81.3,) =arg  max 1,(6,3). 3.3
(61,6251, 52) =arg | max_ 14(6.5) (33)
and the restricted quasi MLE (RQMLE) 6f and3; by
(61, B1) = arg maxIy((61.0). (31, 0)). (3.4)
(01.81)

In what follows we permutate the component®and3, and write

01 a1
P1 }al +by B by
p = ... = oo
p2 }az +by 0> a
B2 b
and
I~n(P) = 1n(6, B),
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wherea; + ap = p+q+ 1, by + bp = b. We also rewrite the fundamental quantit'yeg‘)(a, 3),
A0, 8) and ¥y = ¥y(8, B) in Lemma 1 as\{(p), AJ"(p) and ¥y = W4(p) corresponding to
the permutated vectgy, respectively.

Now let us return the problem of testing (3.1):

H: po=0 vs. A: pp#0. (3.5)

For this we use the following quasi log-likelihood ratio test

Ln = 2[In(p1. 2) ~ Tn(p1.0)] (3.6)
where
(G oee (5 ) o[ 3
pr=| = |, P2=| 5 |andpi=| ~ |. (3.7)
( B B2 B
PartitionAJY(p) and ¥4 corresponding t@; andp, and write them as
Z]_ }al + b1
Ag])(p) = , (3.8)
Z2 }az + by
a1+b1 a2+b2
—_ ——
‘i’g — Fi1 Fi) }a1+b1 ) (3.9)
F @ Fy }az +bp

Similarly as in Taniguchi and Amano (2008) we can see that, udder
Ln = (Z2 ~ FuFi} Z1) F3,y(Z2 ~ FouFyi Z1) + 0p(1), (3.10)

whereFyo1 = Fop — F21F1_11F12. Since

Zo— FuF2Z1 S N(O, Fop1), underH, (3.11)

we have
d
Ln > Xh b, underH. (3.12)
Then we can discuss the estimation problermpoivhenp; is suspected to be close@oIn this
case it is natural to introduce the preliminary test quasi maximum likelihood estimator (PTQMLE)

5T = - (Br - AUNLn < X2y (@), (3.13)

wherel{-} is the indicatior function, an)glg1 () is thea-level critical value of¢? , . The impli-
o+by ar+hy

cation ofp"fT is if the testL,, acceptH : p» = 0, thenpfT = p1 (restricted estimatior), and if not

so, thenp®™ = p1 (unrestricted estimatior).



4 Asymptotic Theory for Estimators.

This section discusses the asymptoticpnfp; and p*fT whenp, is contiguous t@. Let

p+o+1 b
—_——
NG 0
H, = 0 p+q+1 4.1)
0 Vn
0 D, }b

which is a standardizing matrix for estimators 6f ). Permutating the diagonal elementskf
so that the resulting matrix becomes the standardizing matrix for the paramgtes)( Write it as

a;+b;  ax+hy
—_—

ﬁn = Fn 0 ap + by (42)
0 G

a2+b2

whereF,, andG,, correspond to the parametgrsand py, respectively.
Consider the problem of testing

H: p2=0, vs. Ay po=Gl g, (4.3)

where¢ € R®*P  Recalling the discussion of Section 3, it is seen that the log-likelihood ratio
f\g‘)(p) betweerH andA,, has the stochastic expansion

~ , 1 ,
R(p) = € 22— € Fak + 05(1)  underH, (4.4)

Since the asymptotic covariance betwegn- F21F1‘11Z1 andf\g‘)(p) is given byF»,1&, LeCam’s
third lemma implies that, unde,,

d ’
.Ln —>X§2+b2(£ FZZlE)’ (45)

whereX§2+b2(§’F221£) is the noncentral?-distribution with @, + b,) degrees of~freedom and
noncentrality¢’ F»>»,€. Next we derive the contiguous asymptotic distributionFaf{p; — p1).
Since, undeH,

ﬁ‘n(ﬁl -p1) = F1_11Z1 +0p(1), (4.6)

and the asymptotic covariance betweE['Z; and f\g‘)(p) is F'F1¢, hence, LeCam’s third
lemma yields

~ ~ d _ _
Fu(pr— p1) = N(F{ Fio€, F),  underA,. 4.7)
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UnderH, F1‘11Z1 andZ, - F21F1‘1121 are asymptotically independent, which implies tﬁa(ﬁl -
p1) andL,, are so. Hence it follows that, unday,

_ ~ v
lim PLEW(p1 = p1) < @, Ln < Xyu0,(0)]
= (DFfll(w - F1_11F12£) Chi(az+b2)[)(§2+b2(a/); §' Fo21€], (4.8)

v . . L . . . .
wherexz € R, < implies componentwise inequality, (DFl—ll(‘) is the @1 + bi)-dimensional
normal distribution function with meaand covariance matri;;* andChica,+b,)[ - ; €’ F»21€] is
the~distribution function oj(§2+b2(£/F221£). Next we derive the contiguous asymptotic distribution
of Fn(p1 — p1). Note that

-1 -1 -1 -1 -1 -1
~§_]1 _ { F[l+ F'FoFs ) FoFfY —FLFLoF,

v 221 | (4.9)
-1 -1 -1
_F221F21F11 F221

Similarly as in Taniguchi and Amano (2008), we observe that, ukider

Fpr-p1) | =] 2
| |- %] 2

én(ﬁz - p2) = *g + Op(l)’ (410)

leading to, together with (4.9),

FlZy - F{FioF5 0 (Zo - P FZ1) + 0p(1)
= Xo- Fj{F12Z0+0p(1), (say. (4.11)

Fn(ﬁl - p1)

LeCam'’s third lemma leads to

(2= )
Zo 13 o F

underA,. Then the asymptotic mean &% — Fl‘llFlzzo is equal to0 underA,. Hence we may
rewrite Xo — Fy ' F1.Zo asX — Fj!F1,Z, where

2GS )

underA,. Noting the correspondenéé« x andZ < z, we have, undeA,,

, _— W)
lim PLE(pr = p1) < @, Lo 2 01, ()]

f Opa(z + Fi Fioz) d0p i (2). (4.12)
{z1(Z+€)'F221(Z+5)ZX§2+DZ(fl)} H 221

From (4.8) and (4.12), the contiguous asymptotic distributioﬁrQﬁET — p1) is (4.8)+ (4.12).
We evaluate the mean square error (MSE) of standardized estimgbyrl (x) = E[tr{(=)(x)"}].
From the above arguments, Saleh (1992) and Maeyama et al (2008), we have,
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Theorem 1. Under (Al1)-(A3), (G1)-(G6), it holds that

(i) M(p1) = trFy + & For F Fiot, (4.13)
(il) M(p1) = tr Fyj + tr{Fy i FioFopy P Frl, (4.14)
(i) M(BET) = tr Pt + tr{Fy FioFpy For FitH1 — Chiigagenge2) X 4, (@); € Fo21€]}
+(&' Fo1 F{ F12€){2Chi(a, b, 2) )5, 11, (@); € F221€]
—~Chiay +by+4) X 41, (@); € F221£]). (4.15)

5 Numerical Studies.

In this section we investigate the MSE propertiepof o1 andpfT numerically.
Example 1 (Polynomial regression model). Recall our model (2.1):

Yi = (X1, - - ., Xt) B + &, (5.1)

where{a} ~ FARIMA(p,d,q) with spectral densityfg(1) given in (2.5). Suppose th@ =
(ﬁl’)l,ﬁgz)’ is unknown, the structure df(1) is known, andXy = t“1, k = 1,...,b; + by. We
are now interested in estimation pf = 3,, whenp, = By, is suspected to be close @ In this

T/Z:klizl, e ) k=1,...,bs, (e.g. Taniguchi and Kakizawa (2000, p348)). From

(2.10) it is seen that the matriky becomes

caseF = diag(- .

k

: Fll F12 } b1
; I (i— _1)(2i_1)-1/2 X F(g) =
il... T(k—-d)T'(j—d){(2k-1)(2j—1)"1/2} Q) [ Py Fop ]bz

?n(1)/¢(1)PT (k-2d)(j—2d) (k+]—-1-2d)

Wheng; = églg, Theorem 1 provided MSE’s for the three estimators.

In the following, we see the magnitudes of MSE’s of the three estimators in various cases.
Suppose thad = q=1,¢; = 0.4 andy; = 0.2 inthe model (2.2) andthat =a, = 0,b; = by = 1,
a = 0.05,0? = 1 andg is the Gaussian density function. Figures 1 and 2 show the magnitudes of
MSE’s of the three estimators as functions o£@ < 10 whend = 0.1 andd = 0.4, respectively.
When¢ is samll, the RQMLE is the best and UQMLE is the worst, but wkidrecomes larger,
the RQMLE becomes worst and the UQMLE and the PTQMLE has smaller MSE’s than that of
RQMLE. From this figure, we can see that the PTQMLE has moderate MSE than the other two
estimators.

Example 2 (Harmonic regression model). In the model (5.1), suppose théf = coswt,
where 0< v1 < -+ < W 4b, < 7, and that the long memory parametkis equal to 0. Here we are
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interested in estimation gf, = (0} , 3])" whenp, = 6, is suspected to be close@o In this case,

ap b
—_——

Fy, =diag(vn,..., v, v/ V2,..., Vn/V2).

From Lemma 1, it is seen that

¥y
27 (g) fﬂ 6Io[?g‘9 fe(d)ﬁloa@f9 fe(ﬂ)d 1 0 27f(g) f” 6!0939 fe(ﬂ)alc;gefe(ﬂ)d 1
a ay i
_ 0 79 [ fy(1) 1AM (1) 0
27” (g) fﬂ dlog Ze(ﬂ)aloa% fe(ﬁ)d 1 0 ‘ 27”(9) fﬂ dlog ze(ﬁ)alcijggfe(ﬁ)d 1

5.2
Fy | Fp ®-2)

a

|: F]_]_ F12 ]‘a1+b

When@,, = é;lg, Theorem 1 provided MSE’s for the three estimators.

Figure 3 shows the magnitudes of MSE’s of the three estimators as function®9< 1. The
other parameters are fixed &s= 1, 0; = 0 andvy = n/3. Whené, is near from 0, the RQMLE
is the best and UQMLE is the worst, but whenis near from 1, the RQMLE becomes worst and
the UQMLE and the PTQMLE has smaller MSE’s. From this figure, we can conclude that the
PTQMLE is moderate and hardlyffacted by the parametép while the RQMLE and UQMLE
is sensitive. Therefore, we can conclude that PTQMLE is robust with respect to perturbation of
parameteps.

Acknowledgments. The authors are grateful to the editor and two referees for their comments.

REFERENCES

[1] Granger, C.W.J(1980). Long memory relationships and the aggregation of dynamic models.
J. EconometricaNo 14, 227-238.

[2] Hallin, M., Taniguchi, M., Serroukh, A. and Choy, KL999). Local asymptotic normality for
regression models with long-memory disturbanéan. StatistNo 27-6, 2054-2080.

[3] Hannan, E.J(1970).Multiple Time SeriesWiley, New York.

[4] Maeyama, Y., Tamaki, K. and Taniguchi, M2008). Premilinary test estimation for spectra
and its applications to financial hedging probleMvaseda University Time Series Discussion
Paper (WUTS 41).

[5] Saleh, A. K. Md. E.(1992). On shrinkage estimation of the parameters of an autoregressive
Gaussian proces$heory. Prob. Appl37 250-260.

11



[6] Saleh, A. K. Md. E(2006).Theory of Preliminary Test and Stein-Type Estimation with Appli-
cations.Wiley-Interscience.

[7] Taniguchi, M. (1985). An asymptotic expansion for the distribution of the likelihood ratio cri-
terion for a Gaussian autoregressive moving average process under a local alte Ectdive-
metric Theoryl 73-84.

[8] Taniguchi, M. and Amano, T(2007). Systematic approach for portmanteau tests in view of
Whittle likelihood ratio. Waseda University Time Series Discussion Paper (WUTS 37).

[9] Taniguchi, M. and Kakizawa,¥:2000). Asymptotic Theory of Statistical Inference for Time
Series Springer-Verlag, New York.

d=0.1
© -
— Restricted
-------- Unrestricted
------- Preliminary Test
©
L
%)
=
< 4
~ 4

Xi

Figure 1: MSEs in the case df= 0.1
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