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Abstract

The Bartlett-type adjustment is a higher-order asymptotic method for improving the chi-squared
approximation to the null distributions of various test statistics, which ensures that the resulting test
has size α + o(N−1), where 0 < α < 1 is the significance level and N is the sample size. Three
influential papers were published in 1991; Chandra and Mukerjee (CM), Cordeiro and Ferrari (CF)
and Taniguchi (T) in alphabetical order. Recently, author re-investigated the CM/T-approaches in
a unified way and then derived the N−1-local powers of several Bartlett-type adjustments∗ in the
presence of nuisance parameters. This paper considers a generalization of the CF-approach.

1. Introduction

It is well known that the null distributions of the likelihood ratio (LR), Rao’s and Wald’s test statistics
have asymptotic expansions in powers of N−1, where N is the sample size. The Bartlett (or Bartlett-type)
adjustment is designed to make the chi-squared approximation accurate up to order N−1. Historically,
for the LR test statistic LR(N), the following fact was first exploited by Bartlett (1937) in his classical
test for homogeneity of variances: “A simple mean adjustment for LR(N) through multiplication by a
constant of the form 1 + b/N implies P (N)[(1 + b/N)LR(N) ≤ x] = Pr[χ2

f ≤ x] + o(N−1) under the null
hypothesis”, where f is the number of restrictions under test. After Lawley (1956), this became widely
known as the Bartlett correctability of LR(N). Among the vast literature, we further mention Hayakawa
(1977), Bickel and Ghosh (1990), Jensen (1993) and Kakizawa (2011) for the theoretical issues.

Cox (1988) argued that Rao’s and Wald’s test statistics are generally not Bartlett correctable (see
also Taniguchi (1988) and Bickel and Ghosh (1990)). Barndorff-Nielsen and Cox (1994; page 132) thus
posed a question whether there is an effective general way of improving the approximations to the null
distributions of the test statistics other than the LR test statistic. Chandra and Mukerjee (1991) and
Taniguchi (1991b) proposed Bartlett-type adjustments for the test statistic T (N) (they assumed that T (N)

admits the N−1-stochastic expansion), on the basis of the information of score or maximum likelihood
estimator (MLE), respectively. Cordeiro and Ferrari (1991) gave a polynomial transformed test statistic∗∗

TCF(N) = {1 + N−1∑k
�=1 c�(T (N))�−1}T (N) (see also Kakizawa (1996) for the corresponding monotone

version), where k ∈ N and the coefficients c�’s are determined according to an asymptotic expansion for
the null distribution of T (N). Even in the case where the c�’s involve unknown parameters, they might
be replaced by suitable estimators without affecting the order of the approximation. Note that for the
case k = 1, TCF(N) is the traditional Bartlett adjustment. However, the several attempts in Chandra and
Mukerjee (1991) and Taniguchi (1991b) (see also Kakizawa (2010)) were restricted to the test of the simple
null hypothesis. Thus, extending Mukerjee (1992), who considered Rao’s test statistic in the presence of
a scalar nuisance parameter, Kakizawa (2012b) re-examined the Bartlett-type adjustments for a class of
test statistics in the framework of a composite hypothesis about a subvector of the parameters∗, where
both the parameter of interest and the nuisance parameter are multidimensional, without the assumption
of the global parameter orthogonality.

A contribution of this paper (Section 3) is to generalize the Cordeiro-Ferrari adjustment in a sense.
Another contribution of this paper (Section 4) is to study the N−1-local power after the generalized
Cordeiro-Ferrari adjustment. As a result, we show that in general, the N−1-local power after the original

∗In Kyoto symposium (November 30, 2011), author discussed the N−1-local power properties after the Bartlett-type
adjustments proposed in Kakizawa (2012b), using the methodology from the CM/T-approaches.

∗∗The literature on the Cordeiro-Ferrari adjustment with k = 2, 3 is very extensive; some related papers during the last
two decades are found in Kakizawa (2012b).
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Cordeiro-Ferrari adjustment is the same as the N−1-local power of the size adjusted test (based on
the Cornish-Fisher expansion of the percentile). This statement is consistent with Magdalinos (1994)
on several tests for the admissibility of a subset of instrumental variables and Kakizawa (2009) on the
normal-based GMANOVA tests under a non-Gaussian error.

2. Preliminaries

Although we focus on an iid model for notational simplicity, we will arrive at the same conclusions even
in a non-identical or dependent model where some regularity conditions are met for the log-likelihood
derivatives according to the situations under consideration.

2.1. Notation

Let X1, . . . ,XN be iid random vectors (taking values of RdX ) according to a density f(x,θ), θ ∈ Θ, where
Θ is an open convex subset of Rp. We assume that the parameter θ = (θ1, . . . , θp)′ is composed of two
parts, a parameter of interest θ(1) = (θ1, . . . , θp1)

′ and a nuisance parameter θ(2) = (θp1+1, . . . , θp1+p2)
′;

θ = (θ′
(1),θ

′
(2))

′ ∈ Θ = Θ(1) × Θ(2) (say), where p = p1 + p2. We write L(N)(θ) =
∑N

i=1 log f(Xi,θ). We
want to test a composite hypothesis θ(1) = θ(1)0 against θ(1) �= θ(1)0, where θ(1)0 ∈ Θ(1) is specified while

θ(2) ∈ Θ(2) remains unspecified. Let θ̂
(N)
ML ∈ Θ be the (unrestricted) MLE of θ, and let θ̃

(N)
(2)ML ∈ Θ(2) be

the restricted MLE of θ(2) under the constraint θ(1) = θ(1)0, where we write θ̃
(N)
ML =

(
θ(1)0

θ̃
(N)

(2)ML

)
.

As usual, the Rth partial derivative of the log density log f(x,θ) with respect to θ is denoted by

�j1...jR
(x,θ) =

∂

∂θj1

· · · ∂

∂θjR

log f(x,θ) for R ∈ N; j1, . . . , jR ∈ {1, . . . , p}.

We introduce IR = j1 . . . jR for notational simplicity and denote the cumulants of the �IR
(X,θ)’s by

νIR1
,...,IRv

(θ) = Cumθ[�IR1
(X,θ), . . . , �IRv

(X,θ)]

(descending order R1 ≥ · · · ≥ Rv ≥ 1 on the size Ri = |IRi | is assumed, since νIR1
,...,IRv

(θ) is symmetric
under permutation of {IR1 , . . . , IRv}). We assume that the Bartlett identities hold, i.e.

νj1(θ) = 0 , νj1j2(θ) + νj1,j2(θ) = 0 , νj1j2j3(θ) + 〈3〉νj1j2,j3(θ) + νj1,j2,j3(θ) = 0 ,

νj1j2j3j4(θ) + 〈4〉νj1j2j3,j4(θ) + 〈3〉νj1j2,j3j4(θ) + 〈6〉νj1j2,j3,j4(θ) + νj1,j2,j3,j4(θ) = 0

(〈n〉 before a term with indices is a sum of n similar terms obtained by index permutation) for all
θ ∈ Θ. According to the partition θ = (θ′

(1),θ
′
(2))

′, we stack νj,k(θ) and Z
(N)
j (θ) = N−1/2∑N

i=1 �j(Xi,θ)

as follows: [νj,k(θ)]j,k∈{1,...,p} =

(
ν(1,1)(θ) ν(1,2)(θ)
ν(2,1)(θ) ν(2,2)(θ)

)
, [Z(N)

j (θ)]j=1,...,p =

⎛⎝ Z(N)
(1) (θ)

Z(N)
(2) (θ)

⎞⎠ (they are

referred to as the p× p Fisher information matrix ν(θ) and the p× 1 score vector Z(N)(θ), respectively).
Further, we write Z

(N)
j1...jR

(θ) = N−1/2∑N
i=1{�j1...jR

(Xi,θ) − νj1...jR
(θ)}, R = 2, 3, . . ..

Unless otherwise stated, we use the letters {j, k} as indices of θ that run from 1 to p, the letters
{a, b} as indices of θ(1) that run from 1 to p1 and the letters {r, s} as indices of θ(2) that run from
p1 + 1 to p. These indices, without or with suffixes (or primes), serve two purposes, first to denote a
typical element of any R-way array [Qj1...jR

]j1,...,jR∈{1,...,p} and second to indicate the range of a sum
in the Einstein summation convention. We denote by νj,k(θ) the (j, k)th element of ν−1(θ), where we
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assume that ν(θ) is nonsingular in this paper. Let [νr,s
(2,2)(θ)]r,s∈{p1+1,...,p} be the inverse of the matrix

ν(2,2)(θ) = [νr,s(θ)]r,s∈{p1+1,...,p}. We denote by νa,b
(11·2)(θ) the (a, b)th element of ν−1

(11·2)(θ), where

ν(11·2)(θ) = [ν(11·2)a,a′ (θ)]a,a′∈{1,...,p1} = ν(1,1)(θ) − ν(1,2)(θ)ν−1
(2,2)(θ)ν(2,1)(θ) .

Further, we denote by Gj,a(θ) the (j, a)th element of G(θ) =

(
Ip1

−ν−1
(2,2)(θ)ν(2,1)(θ)

)
, where Ip1 is the

p1 × p1 identity matrix. We note ν(11·2)(θ) = G(θ)′ν(θ)G(θ) and

G(θ)ν−1
(11·2)(θ)G(θ)′ = ν−1(θ) −

(
Op1p1 Op1p2

Op2p1 ν−1
(2,2)(θ)

)
= [Bj,j′(θ)]j,j′∈{1,...,p} (say). (1)

2.2. A class of (unadjusted) test statistics

We denote by P
(N)
θ the θ-distribution of X1, . . . ,XN . For any sequence {Y (N)}N≥1 of random variables

having the form Y (N) = gN (X1, . . . ,XN ), we use the pointwise notation Y (N) = o(N)
θ (q, β) under P

(N)
θ ,

if P
(N)
θ [|Y (N)| > d(log N)β] = o(N−q) as N → ∞ for some d > 0, q ≥ 0 and β ≥ 0.

A crucial point of the N−1-asymptotic theory in this paper is that using Bhattacharya and Ghosh’s
(1978) argument and Taniguchi (1991a; page 76), θ̂

(N)
ML (and θ̃

(N)
ML ) is well-defined as the local maximum

point (lying in an ε(N)-neighborhood of the true parameter θ† ∈ Θ; ε(N) ∝ N−1/2(log N)1/2) of the
unrestricted (and restricted) log-likelihood with P

(N)
θ† -probability 1 − o(N−(1+δ/2)) for some δ ≥ 0‡. For

any (nonrandom/random) scalar or vector or matrix function Q(·), we use the notation Q̂, Q̃ and Q

instead of Q(θ̂
(N)
ML ), Q(θ̃

(N)
ML ) and Q(θ†), respectively, where θ† =

(
θ(1)0

θ†
(2)

)
∈ Θ, with θ†

(2) being the

irrelevant true value of the nuisance parameter θ(2).
Following Kakizawa (2012b), we consider a class TN of test statistics for testing the null hypothesis

θ(1) = θ(1)0 against θ(1) �= θ(1)0, as follows: Every test statistic T (N) = TN (X1, . . . ,XN ;θ(1)0) ∈ TN

admits a stochastic expansion of the form

T (N) = T̃
(N)
3rd +

1
N3/2

o(N)
θ† (1 + ξ, β) for some fixed β > 0 and ξ ≥ 0‡ (2)

(we emphasize that T̃
(N)
3rd = T

(N)
3rd (θ̃

(N)

ML ) is also a feasible statistic), where

T̃
(N)
3rd = (Z̃(N)

(1) )′ν̃−1
(11·2)Z̃

(N)
(1) +

2
N1/2

(
C̃G G G

b1b2b3

3∏
i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

+ C̃G G
b1b2,k1k2

Z̃
(N)
k1k2

2∏
i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

)

+
2
N

{
D̃G G G G

b1b2b3b4

4∏
i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

+ (D̃G G G
b1b2b3,k1k2

Z̃
(N)
k1k2

+ D̃G G G
b1b2b3,k1k2k3

Z̃
(N)
k1k2k3

)
3∏

i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

+D̃G G
b1b2,k1k2,k3k4

Z̃
(N)
k1k2

Z̃
(N)
k3k4

2∏
i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

}
(3)

(hereafter, [v]i sometimes stands for the ith element vi of any vector v),

CG G G
a1a2a3

(·) = Cj1j2j3(·)Gj1,a1(·)Gj2,a2(·)Gj3,a3(·) , CG G
a1a2,k1k2

(·) = Cj1j2,k1k2(·)Gj1,a1(·)Gj2,a2(·)

(we adopt similar definitions for DG G G G
a1a2a3a4

(·), DG G G
a1a2a3,k1k2

(·), DG G G
a1a2a3,k1k2k3

(·) and DG G
a1a2,k1k2,k3k4

(·)). Here,
β, ξ, C-functions; Cj1j2j3(·) and Cj1j2,k1k2(·), D-functions; Dj1j2j3j4(·), Dj1j2j3,k1k2(·), Dj1j2j3,k1k2k3(·) and

‡Technically, we need δ, ξ > 0 for the power analysis (Section 4) under a sequence of local alternatives θ = θ† + N−1/2h.

Assuming the usual regularity conditions, we obtained the stochastic expansions of θ̂
(N)
ML and θ̃

(N)
ML , as well as the connection

between θ̂
(N)
ML and θ̃

(N)
ML . The details are found in Kakizawa (2012b).
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Dj1j2,k1k2,k3k4(·) may vary from one test statistic in TN to another, where these C(or D)-functions are of
class C2(Θ) (or C1(Θ)). Without loss of generality, we assume that Cj1j2j3(·), Cj1j2,k1k2(·), Dj1j2j3j4(·),
Dj1j2j3,k1k2(·), Dj1j2j3,k1k2k3(·) and Dj1j2,k1k2,k3k4(·) are symmetric under permutation of {j1, j2, j3, j4}
and that Dj1j2,k1k2,k3k4(·) = Dj1j2,k3k4,k1k2(·). Notice that this class TN includes, in particular, the LR,
Rao’s and Wald’s test statistics (the respective C,D-functions are found in Kakizawa (2012b)), as well as

Terrell’s gradient test statistic defined by grad(N) = (Z̃(N)
(1) )′N1/2(θ̂

(N)

(1)ML−θ(1)0) with θ̂
(N)

ML =

⎛⎝ θ̂
(N)

(1)ML

θ̂
(N)

(2)ML

⎞⎠.

2.3. Cordeiro-Ferrari adjustment

We write

C+G G G
a1a2a3

(·) =
1
3!

∑
{a1a2a3}

{CG G G
a1a2a3

(·) + CG G
a1a2,k1k2

(·)ν G
k1k2,a3

(·)}

= CG G G
a1a2a3

(·) +
〈3〉
3

CG G
a1a2,k1k2

(·)ν G
k1k2,a3

(·) ,

D+G G G G
a1a2a3a4

(·) =
1
4!

∑
{a1a2a3a4}

{DG G G G
a1a2a3a4

(·) + DG G G
a1a2a3,k1k2

(·)ν G
k1k2,a4

(·) + DG G G
a1a2a3,k1k2k3

(·)ν G
k1k2k3,a4

(·)

+DG G
a1a2,k1k2,k3k4

(·)ν G
k1k2,a3

(·)ν G
k3k4,a4

(·)}

= DG G G G
a1a2a3a4

(·) +
〈4〉
4

{DG G G
a1a2a3,k1k2

(·)ν G
k1k2,a4

(·) + DG G G
a1a2a3,k1k2k3

(·)ν G
k1k2k3,a4

(·)}

+
〈6〉
6

DG G
a1a2,k1k2,k3k4

(·)ν G
k1k2,a3

(·)ν G
k3k4,a4

(·) ,

which may vary from one test statistic in TN to another, where
∑

{a1...aR} stands for the summation over
R! permutations of {a1, . . . , aR}. The meanings of these notations are apparent by rewriting

Z̃
(N)
j1...jR

= (Z̃(N)
j1...jR

− ν̃ G
j1...jR,bR+1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bR+1

) + ν̃ G
j1...jR,bR+1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bR+1

, R = 2, 3

in (3). Also, it is customary to define

Mj1j2,j3j4(·) = νj1j2,j3j4(·) − νj1j2,k(·)νk,k′
(·)νj3j4,k′(·) ,

Nj1j2,j3,j4(·) = νj1j2,j3,j4(·) − νj1j2,k(·)νk,k′
(·)νj3,j4,k′(·) ,

corresponding to Cov
(N)
θ (Z⊥(N)

j1j2
(θ), Z⊥(N)

j3j4
(θ)) and N1/2Cum

(N)
θ (Z⊥(N)

j1j2
(θ), Z(N)

j3
(θ), Z(N)

j4
(θ)), where

Z
⊥(N)
j1...jR

(θ) = Z
(N)
j1...jR

(θ) − νj1...jR,k(θ)νk,k′
(θ)Z(N)

k′ (θ) .

For our derivation, it is helpful to use the null covariances

Cov
(N)
θ (Z0(N)

a (θ), Z(N)
r (θ)) = Cov

(N)
θ (Z⊥(N)

j1...jv
(θ), Z(N)

j (θ)) ≡ 0

(i.e., the variance matrix of [Z0(N)
a (θ)]a=1,...,p1, [Z(N)

r (θ)]r=p1+1,...,p and [Z⊥(N)
jj′ (θ), Z⊥(N)

jj′j′′ (θ)]j,j′,j′′∈{1,...,p}
under P

(N)
θ is block diagonal), where

Z0(N)
a (θ) = Z(N)

a (θ) − νa,s(θ)νs,s′
(2,2)(θ)Z(N)

s′ (θ) = Gj,a(θ)Z(N)
j (θ) .

Proposition 1 (Kakizawa (2012b)) The Cordeiro-Ferrari adjustment for T (N) ∈ TN is given by

TCF(N) =
[
1 − 2

N

{ β̃C
3

p1(p1 + 2)(p1 + 4)
(T (N))2 +

β̃CD
2

p1(p1 + 2)
T (N) +

β̃CD
1

p1

}]
T (N) (4)

(the author has obtained the closed-form expressions for βCD
1 (·) = −ΓCD

b1b2
(·)νb1,b2

(11·2)(·), βCD
2 (·) and βC

3 (·)).
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It is well known (see Introduction) that the LR test statistic LR(N) = 2(L̂(N) − L̃(N)) is Bartlett
correctable. Proposition 1 indicates that Rao’s test statistic R(N) = (Z̃(N)

(1) )′ν̃−1
(11·2)Z̃

(N)
(1) is also Bartlett

correctable if νj1,j2,j3(·) = νj1,j2,j3,j4(·) ≡ 0, j1, j2, j3, j4 ∈ {1, . . . , p} (in that case, βR
2 (·) = βR

3 (·) ≡ 0).

3. Generalized Cordeiro-Ferrari adjustment

Our primary goal is to propose, as the alternative to TCF(N) (see (4)), an improved test statistic of the
form

TGCF(N) = T (N) +
2
N

∑
R=2,4,6

Γ̃b1...bR

R∏
i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

, (5)

where functions Γa1...aR
(·)’s are of class C1(Θ). Without loss of generality, we assume that for R = 2, 4, 6,

Γa1...aR
(·) is symmetric under permutation of {a1, . . . , aR}. In what follows, we will give necessary and

sufficient conditions on ΓR(·) = [Γa1...aR
(·)]a1 ,...,aR∈{1,...,p1}, R = 2, 4, 6, such that

P
(N)
θ† [TGCF(N) ≤ x] = Pr[χ2

p1
≤ x] + o(N−1) .

Recall that
T (N) = U (N)

a νa,b
(11·2)U

(N)
b +

1
N3/2

o(N)

θ† (1 + min(δ/2, ξ),max(5/2, β)) ,

where
U (N)

a = Z0(N)
a +

1
N1/2

UC(N)
a +

1
N

UCD(N)
a , a = 1, . . . , p1

are polynomials in [Z0(N)
a ]a=1,...,p1, [Z

(N)
r ]r=p1+1,...,p and [Z⊥(N)

jj′ , Z
⊥(N)
jj′j′′ ]j,j′,j′′∈{1,...,p}, as shown in Kakizawa

(2012b). Then, we first show that (5) admits the stochastic expansion

TGCF(N) = U
Γ2,4,6(N)
a νa,b

(11·2)U
Γ2,4,6(N)
b +

1
N3/2

o(N)
θ† (1 + min(δ/2, ξ),max(5/2, β)) (6)

with

U
Γ2,4,6(N)
a = U (N)

a +
1
N

∑
R=2,4,6

Γb1...bR−1a

R−1∏
i=1

[ν−1
(11·2)Z

(N)
(1) ]bi

, a = 1, . . . , p1 .

We next compute the null cumulants (up to o(N−1))

E
(N)
θ† [UΓ2,4,6(N)

a1 ] =
κC

a1

N1/2
+ o(N−1) ,

Cov
(N)

θ† (UΓ2,4,6(N)
a1 , U

Γ2,4,6(N)
a2 ) = ν(11·2)a1,a2

+
κCD

a1,a2

N
+

〈2〉
N

(
Γa1a2 + 〈3〉Γbb′a1a2ν

b,b′
(11·2)

+〈15〉Γb1b′1b2b′2a1a2
ν

b1,b′1
(11·2)ν

b2,b′2
(11·2)

)
+ o(N−1) ,

Cum
(N)
θ† (UΓ2,4,6(N)

a1 , . . . , U
Γ2,4,6(N)
a3 ) =

κC
a1,a2,a3

N1/2
+ o(N−1) ,

Cum
(N)
θ† (UΓ2,4,6(N)

a1 , . . . , U
Γ2,4,6(N)
a4 ) =

κCD
a1,a2,a3,a4

N
+

〈4!〉
N

(
Γa1a2a3a4 + 〈10〉Γbb′a1a2a3a4ν

b,b′
(11·2)

)
+ o(N−1) ,

Cum
(N)
θ† (UΓ2,4,6(N)

a1 , . . . , U
Γ2,4,6(N)
a5 ) = o(N−1) ,

Cum
(N)
θ† (UΓ2,4,6(N)

a1 , . . . , U
Γ2,4,6(N)
a6 ) =

〈6!〉
N

Γa1a2a3a4a5a6 + o(N−1)

(the closed-form expressions for κC
a1

’s, κCD
a1,a2

’s, κC
a1,a2,a3

’s, κCD
a1,a2,a3,a4

’s are found in Kakizawa (2012b)).

In this way, we can obtain the N−1-asymptotic expansion of P
(N)

θ† [UΓ2,4,6(N)
a νa,b

(11·2)U
Γ2,4,6(N)
b ≤ x] via the

valid N−1-Edgeworth expansion of (UΓ2,4,6(N)
1 , . . . , U

Γ2,4,6(N)
p1 )′ (see e.g. Bhattacharya and Ghosh (1978)).

By virtue of Chibisov’s (1972) lemma applied to (6) (see also Magdalinos (1992)), we finally have
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Theorem 2

P
(N)

θ† [TGCF(N) ≤ x] =
∫ x

0
gp1(t) dt − 2

N
{πCDΓ2

1 gp1+2(x) + πCDΓ4
2 gp1+4(x) + πCΓ6

3 gp1+6(x)} + o(N−1) ,

where

πCDΓ2
1 = βCD

1 + Γb1b2ν
b1,b2
(11·2) , πCDΓ4

2 = βCD
2 + 3Γb1b2b3b4ν

b1,b2
(11·2)ν

b3,b4
(11·2) ,

πCΓ6
3 = βC

3 + 15Γb1b2b3b4b5b6ν
b1,b2
(11·2)ν

b3,b4
(11·2)ν

b5,b6
(11·2) .

In case of p1 > 1, infinitely many functions [Γa1a2(·),Γa1a2a3a4(·),Γa1a2a3a4a5a6(·)]a1,a2,a3,a4,a5,a6∈{1,...,p1}
that satisfy πCDΓ2

1 = πCDΓ4
2 = πCΓ6

3 = 0 give rise to an improved test statistic.

Example 1 The original Cordeiro-Ferrari adjustment (4) is a special case of

ΓCF,CD
a1a2

(·) = −βCD
1 (·)
ϕ1

ν(11·2)a1,a2
(·) , ΓCF,CD

a1a2a3a4
(·) = −βCD

2 (·)
ϕ2

〈3〉
3

ν(11·2)a1,a2
(·)ν(11·2)a3 ,a4

(·) ,

ΓCF,C
a1a2a3a4a5a6

(·) = −βC
3 (·)
ϕ3

〈15〉
15

ν(11·2)a1,a2
(·)ν(11·2)a3 ,a4

(·)ν(11·2)a5 ,a6
(·) , a1, a2, a3, a4, a5, a6 ∈ {1, . . . , p1} ,

where ϕ1 = p1, ϕ2 = p1(p1 + 2) and ϕ1 = p1(p1 + 2)(p1 + 4).

Example 2 For any symmetric matrix function A(·) = [Aa1a2(·)]a1,a2∈{1,...,p1}, with Aa1a2(·)’s being of
class C1(Θ), one may consider‡‡

ΓACD
a1a2

(·) = −βCD
1 (·)
φA

1 (·)
Aa1a2(·) , ΓACD

a1a2a3a4
(·) = −βCD

2 (·)
φA

2 (·)
〈3〉
3

Aa1a2(·)Aa3a4(·) ,

ΓAC
a1a2a3a4a5a6

(·) = −βC
3 (·)

φA
3 (·)

〈15〉
15

Aa1a2(·)Aa3a4(·)Aa5a6(·) , a1, a2, a3, a4, a5, a6 ∈ {1, . . . , p1} ,

provided that

φA
1 (θ) = tr{A(θ)ν−1

(11·2)(θ)} �= 0 , φA
2 (θ) = [tr{A(θ)ν−1

(11·2)(θ)}]2 + 2tr[{A(θ)ν−1
(11·2)(θ)}2] �= 0 ,

φA
3 (θ) = [tr{A(θ)ν−1

(11·2)(θ)}]3 + 6[tr{A(θ)ν−1
(11·2)(θ)}]tr[{A(θ)ν−1

(11·2)(θ)}2] + 8tr[{A(θ)ν−1
(11·2)(θ)}3] �= 0

for all θ ∈ Θ. For examples, we set A(·) ≡ γγ ′ for any nonzero constant vector γ ∈ Rp1 to define the
adjustment

TGCF(N)
γ = T (N) − 2

N

{
β̃C

3

(γ ′ν̃−1
(11·2)Z̃

(N)
(1) )6

15(γ ′ν̃−1
(11·2)γ)3

+ β̃CD
2

(γ ′ν̃−1
(11·2)Z̃

(N)
(1) )4

3(γ ′ν̃−1
(11·2)γ)2

+ β̃CD
1

(γ ′ν̃−1
(11·2)Z̃

(N)
(1) )2

(γ ′ν̃−1
(11·2)γ)

}
.

Example 3 Instead of the one-parameterization stated above, the equation πCΓ6
3 = 0 has the solution

Γ6(·) = Γ�C
6 (·) (similar discussions about the solution of πCDΓ4

2 = 0 or πCDΓ2
1 = 0; Γ4(·) = Γ�CD

4 (·) and
Γ2(·) = ΓCD

2 (·) = [ΓCD
a1a2

(·)]a1,a2∈{1,...,p1} are possible), where the elements of Γ�C
6 (·) are given by

Γ�C
a1a2a3a4a5a6

(·) = − 1
6!

∑
{a1a2a3a4a5a6}

1
72

{νG G G
a1,a2,a3

(·) + 6C+G G G
a1a2a3

(·)}{νG G G
a4 ,a5,a6

(·) + 6C+G G G
a4a5a6

(·)} .

The resulting adjustment involves the term −N−1{(1/6)(ν̃G G G
b1 ,b2,b3

+6C̃+G G G
b1b2b3

)
∏3

i=1[ν̃
−1
(11·2)Z̃

(N)
(1) ]bi

}2, unlike

Kakizawa (2012a,b) with the N−1/2-correction −2N−1/2(1/6)(ν̃G G G
b1 ,b2,b3

+ 6C̃+G G G
b1b2b3

)
∏3

i=1[ν̃
−1
(11·2)Z̃

(N)
(1) ]bi

.

‡‡In principle, it is possible to use different matrix functions [vAa1a2(·)]a1,a2∈{1,...,p1}, v = 1, 2, 3.

6



Remark 1 For the case LR(N) = 2(L̂(N) − L̃(N)), it turns out that πLR,Γ4
2 = πLR,Γ6

3 = 0 by letting
Γa1a2a3a4(·) = Γa1a2a3a4a5a6(·) ≡ 0 (note that κLR

a1,a2,a3
= κLR

a1,a2,a3,a4
= 0, a1, a2, a3, a4 ∈ {1, . . . , p1}).

Then, the adjustment for the case A(·) = ν(11·2)(·) yields the traditional Bartlett adjustment

(
1 +

ρ̃LR

N

)
LR(N) = LR(N) +

ρ̃LR

N
(Z̃(N)

(1) )′ν̃−1
(11·2)Z̃

(N)
(1) +

1
N3/2

o(N)

θ† (1 + δ/2, 3/2) ,

whereas another idea of choosing A(·) ≡ γγ′, hence the additive adjustment

ALR(N)
γ = LR(N) + p1ρ̃

LR
(γ′ν̃−1

(11·2)Z̃
(N)
(1) )2

Nγ ′ν̃−1
(11·2)γ

for any γ ∈ Rp1 − {0p1},

is found in Kakizawa (2011). Kakizawa (2012b) also gave the other additive adjustments in the form

ALR(N) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
LR(N) +

2
N

(Γ̃LR
b1b2 − ∆̃LR

b1b2)
2∏

i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

LR(N) +
2
N

Γ̃LR
b1b2

2∏
i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

.

4. Asymptotic expansion of TGCF(N) under a sequence of local alternatives

It is straightforward (but tedious) to obtain the non-null cumulants of U
Γ2,4,6(N)
a ’s up to o(N−1). Then¶

Theorem 3

P
(N)

θ†+N−1/2(h′
(1)

,0′p2
)′ [T

GCF(N) > x] = Pθ†+N−1/2(h′
(1)

,0′p2
)′ [U

Γ2,4,6(N)
a νa,b

(11·2)U
Γ2,4,6(N)
b > x] + o(N−1)

= 1 − Gp1(x;h′
(1)ν(11·2)h(1)) +

2∑
�=1

2
N �/2

3�∑
v=1

π̇(�)
v gp1+2v(x;h′

(1)ν(11·2)h(1))

+o(N−1) ,

having the forms π̇
(1)
1 = π

(1)
1[1] + π

(1)
1[3], π̇

(1)
2 = π

C(1)
2[1] + π

(1)
2[3], π̇

(1)
3 = π

C(1)
3[3] ,

π̇
(2)
1 = πCDΓ2

1 + π
C(2)
1[2] + π

(2)
1[4] + π

(2)
1[6] ,

π̇
(2)
2 = πCDΓ4

2 + {Γ�� + π
CD(2)
2[2] } + π

C(2)
2[4] + π

(2)
2[6] ,

π̇
(2)
3 = πCΓ6

3 + {6Γ��bb′ν
b,b′
(11·2) + π

CD(2)
3[2] } + π

C(2)
3[4] + π

C(2)
3[6] ,

π̇
(2)
4 = {45Γ��b1b′1b2b′2ν

b1,b′1
(11·2)ν

b2,b′2
(11·2) + π

C(2)
4[2] } + {Γ���� + π

CD(2)
4[4] } + π

C(2)
4[6] ,

π̇
(2)
5 = {15Γ����bb′ν

b,b′
(11·2) + π

C(2)
5[4] } + π

C(2)
5[6] ,

π̇
(2)
6 =

{
Γ������ +

1
2

(πC(1)
3[3] )2

}
(the symbol [i] means that the coefficient is a homogeneous polynomial of degree i in h(1) ∈ Rp1).

¶Kakizawa (2012a) obtained

π̇
(1)
1 = −1

2
(ν G

rr′,� + ν G
r,r′,� )νr,r′

(22)
− 1

6
(3νGGG

� �,� + 2νG G G
�,�,�) +

1

2
(2ν G G

•�,� + ν G G
•,�,�) ,

π̇
(1)
2 =

1

2
(νG G G

�,b,b′ + 6C+GGG
� b b′)ν

b,b′
(11·2) +

1

6
νG G G
�,�,� , π̇

(1)
3 =

1

6
(νG G G

�,�,� + 6C+GGG
� � �)

to discuss the N−1/2-asymptotic theory under P
(N)

θ†+N−1/2h
, where we write Q...•... = Q...j...hj and Q...�... = Q...a...ha.
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Incidentally, if one specializes to the scalar case in the absence of nuisance parameters (p = p1 = 1)
and Γ2 = Γ4 = Γ6 ≡ 0, the above expressions are in agreement with the findings of Taniguchi (1991b)
(see also Rao and Mukerjee (1997)). We also have the asymptotic expansion of

P
(N)

θ†+N−1/2(h′
(1)

,0′p2
)′

[
T (N) >

{
1+

2
N

( β̃C
3

ϕ3
x2+

β̃CD
2

ϕ2
x+

β̃CD
1

ϕ1

)}
x
]

= P
(N)

θ†+N−1/2(h′
(1)

,0′p2
)′ [T

CF(N) > x]+o(N−1)

as a special case of Theorem 3 with π
CDΓCF,CD

2
1 = π

CDΓCF,CD
4

2 = π
CΓCF,C

6
3 = 0, where

ΓCF,CD
�� = −βCD

1

p1
(h′

(1)ν(11·2)h(1)) ,

6ΓCF,CD
��bb′ νbb′

(11·2) = −2βCD
2

p1
(h′

(1)ν(11·2)h(1)) ,

45ΓCF,C
��b1b′1b2b′2

ν
b1b′1
(11·2)ν

b2b′2
(11·2) = −3βC

3

p1
(h′

(1)ν(11·2)h(1)) ,

ΓCF,CD
���� = − βCD

2

p1(p1 + 2)
(h′

(1)ν(11·2)h(1))
2 ,

15ΓCF,C
����bb′ν

bb′
(11·2) = − 3βC

3

p1(p1 + 2)
(h′

(1)ν(11·2)h(1))
2 ,

ΓCF,C
������ = − βC

3

p1(p1 + 2)(p1 + 4)
(h′

(1)ν(11·2)h(1))
3 .

So, unless p1 = 1, the N−1-local power of the Cordeiro-Ferrari adjustment (equivalently the N−1-local
power of the size adjusted test based on the Cornish-Fisher expansion of the percentile) generally depends
on the C,D-functions associated with T (N) ∈ TN , which contrasts with Rao and Mukerjee (1997).

Using the idea of Example 3, we observe that the N−1-local power of the test TGCF�(N) > χ2
p1

is
independent of the D-functions associated with T (N) ∈ TN , where

TGCF�(N) = T (N) +
2
N

(
Γ̃CD

b1b2

2∏
i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

+ Γ̃�CD
b1b2b3b4

4∏
i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

+ Γ̃�C
b1b2b3b4b5b6

6∏
i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

)
or

T (N) +
2
N

(
Γ̃CD

b1b2

2∏
i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

+ Γ̃�CD
b1b2b3b4

4∏
i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

+ Γ̃AC
b1b2b3b4b5b6

6∏
i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

)
.
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