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Abstract

The Bartlett-type adjustment is a higher-order asymptotic method for improving the chi-squared
approximation to the null distributions of various test statistics, which ensures that the resulting test
has size a + o(N~!), where 0 < a < 1 is the significance level and N is the sample size. Three
influential papers were published in 1991; Chandra and Mukerjee (CM), Cordeiro and Ferrari (CF)
and Taniguchi (T) in alphabetical order. Recently, author re-investigated the CM/T-approaches in
a unified way and then derived the N~ !-local powers of several Bartlett-type adjustments* in the
presence of nuisance parameters. This paper considers a generalization of the CF-approach.

1. Introduction

It is well known that the null distributions of the likelihood ratio (LR), Rao’s and Wald’s test statistics
have asymptotic expansions in powers of N !, where N is the sample size. The Bartlett (or Bartlett-type)
adjustment is designed to make the chi-squared approximation accurate up to order N—'. Historically,
for the LR test statistic LR )| the following fact was first exploited by Bartlett (1937) in his classical
test for homogeneity of variances: “A simple mean adjustment for LR through multiplication by a
constant of the form 1+ b/N implies PM[(1 +b/N)LRW) < 2] = Pr[xfc < z] 4+ o(N~1) under the null
hypothesis”, where f is the number of restrictions under test. After Lawley (1956), this became widely
known as the Bartlett correctability of LR, Among the vast literature, we further mention Hayakawa
(1977), Bickel and Ghosh (1990), Jensen (1993) and Kakizawa (2011) for the theoretical issues.

Cox (1988) argued that Rao’s and Wald’s test statistics are generally not Bartlett correctable (see
also Taniguchi (1988) and Bickel and Ghosh (1990)). Barndorff-Nielsen and Cox (1994; page 132) thus
posed a question whether there is an effective general way of improving the approximations to the null
distributions of the test statistics other than the LR test statistic. Chandra and Mukerjee (1991) and
Taniguchi (1991b) proposed Bartlett-type adjustments for the test statistic 7' () (they assumed that TW)
admits the N~!-stochastic expansion), on the basis of the information of score or maximum likelihood
estimator (MLE), respectively. Cordeiro and Ferrari (1991) gave a polynomial transformed test statistic**
TOFN) = {1 4+ N1 525 L ep(mYE13T () (see also Kakizawa (1996) for the corresponding monotone
version), where k € N and the coefficients ¢;’s are determined according to an asymptotic expansion for
the null distribution of T®). Even in the case where the ¢;’s involve unknown parameters, they might
be replaced by suitable estimators without affecting the order of the approximation. Note that for the
case k = 1, T°F(V) is the traditional Bartlett adjustment. However, the several attempts in Chandra and
Mukerjee (1991) and Taniguchi (1991b) (see also Kakizawa (2010)) were restricted to the test of the simple
null hypothesis. Thus, extending Mukerjee (1992), who considered Rao’s test statistic in the presence of
a scalar nuisance parameter, Kakizawa (2012b) re-examined the Bartlett-type adjustments for a class of
test statistics in the framework of a composite hypothesis about a subvector of the parameters®, where
both the parameter of interest and the nuisance parameter are multidimensional, without the assumption
of the global parameter orthogonality.

A contribution of this paper (Section 3) is to generalize the Cordeiro-Ferrari adjustment in a sense.
Another contribution of this paper (Section 4) is to study the N~!-local power after the generalized
Cordeiro-Ferrari adjustment. As a result, we show that in general, the N~!-local power after the original

*In Kyoto symposium (November 30, 2011), author discussed the N~ '-local power properties after the Bartlett-type
adjustments proposed in Kakizawa (2012b), using the methodology from the CM/T-approaches.

**The literature on the Cordeiro-Ferrari adjustment with k = 2,3 is very extensive; some related papers during the last
two decades are found in Kakizawa (2012b).



Cordeiro-Ferrari adjustment is the same as the N~!-local power of the size adjusted test (based on
the Cornish-Fisher expansion of the percentile). This statement is consistent with Magdalinos (1994)
on several tests for the admissibility of a subset of instrumental variables and Kakizawa (2009) on the
normal-based GMANOVA tests under a non-Gaussian error.

2. Preliminaries

Although we focus on an iid model for notational simplicity, we will arrive at the same conclusions even
in a non-identical or dependent model where some regularity conditions are met for the log-likelihood
derivatives according to the situations under consideration.

2.1.  Notation

Let X1,..., Xy beiid random vectors (taking values of R9X) according to a density f(x, 8), 8 € ©, where
® is an open convex subset of R?. We assume that the parameter 8 = (1, ...,6,)" is composed of two
parts, a parameter of interest (1) = (01,...,6,,)" and a nuisance parameter 6y = (p; 1, 0p;4p,)";
0= (9’(1), 22))’ € ® = O x Oy (say), where p = p; + p2. We write LN (@) =N log f(X;,0). We

want to test a composite hypothesis 61y = 61)y against 81y # (1), where 8(1)p € ©(y) is specified while

0(2) € © (o) remains unspecified. Let @i\ﬁ) € O be the (unrestricted) MLE of 6, and let égf\/m € ©y) be

- 0
the restricted MLE of 6(3) under the constraint 61y = 6(1)9, where we write 91(\/][\2 = < ~8\;()) )
(2)ML
As usual, the Rth partial derivative of the log density log f(x, @) with respect to 6 is denoted by

0 0

06, 00

Ui jn(x,0) = log f(x,0) for Re N; j1,...,jr € {1,...,p}.

JR
We introduce Ig = ji ... jr for notational simplicity and denote the cumulants of the ¢1,(X, 8)’s by

l/[RU___,[Rv (9) = Cumg [f[Rl (X, 9), ce ’EIRU (X, 9)]

(descending order R; > --- > R, > 1 on the size R; = |Ig,| is assumed, since Vip,,In, () is symmetric
under permutation of {Ig,,...,Ir,}). We assume that the Bartlett identities hold, i.e.

Vi, (9) =0, Vjij2 (9) + Vi o (9) =0, Vijij27s (9) + <3>Vj1j2,j3(9) + Vi j2.53 (9) =0,
Vij1j2j3ja (0) + <4>Vj1j2j3,j4(9) + <3>Vj1j2,j3j4 (0) + <6>Vj1j27j3,j4(9) + Vj17j2,j3,j4(9) =0

((n) before a term with indices is a sum of n similar terms obtained by index permutation) for all
6 € ©. According to the partition 6 = (6(;), 8(,))’, we stack v;;(8) and Z](-N)(O) = N2V 0(X;,0)

(V)
v 0) v 0 Z,y(0)
as follows: [V 1(0)];ref1,..p} = < Vggggg ng;§9§ ), [Z;N)(H)]jzl,__,p = ( ZE}\;)(O) ) (they are
’ (2)

referred to as the p x p Fisher information matrix (8) and the p x 1 score vector Z(V)(8), respectively).

Further, we write Z\" ), (8) = N"Y2 XN {0, ;.(Xi,0) — vj, jx(0)}, R=2,3,....

Unless otherwise stated, we use the letters {j,k} as indices of @ that run from 1 to p, the letters

)

{a,b} as indices of 6(;) that run from 1 to p; and the letters {r,s} as indices of 8y that run from
p1 + 1 to p. These indices, without or with suffixes (or primes), serve two purposes, first to denote a
typical element of any R-way array [Qj,. gl o dRE{L, P} and second to indicate the range of a sum
in the Einstein summation convention. We denote by v#¥(0) the (j, k)th element of v~!(8), where we



assume that v(0) is nonsingular in this paper. Let [v]. Vs, 2)(9)]m€{p1+1 p} be the inverse of the matrix

v22)(0) = [Vrs(0)]r sefpr+1,...p}- We denote by V(ll{.Q)(B) the (a,b)th element of 1/(11 9)(0), where

V(11-2)(9) = [V(11-2)a,a/(9)]a,a/e{1,...,p1} = V(l,l)(e) - V(1,2)(9)V(_2%2)(9)V(2,1)(9) .

1
Further, we denote by G; (@) the (j,a)th element of G(0) = ( —uég)(ﬂp)lu@’l)(e) ), where I, is the
p1 X p1 identity matrix. We note v(11.9)(0) = G(0)'v(0)G(0) and
o o
—1 /. —1 _ pP1p1 pi1p2 o . .
G(0)v(112)(0)G(0) =v(0) ( Opun Vigly)(0) ) = [Bjir(O)jjreqr .oy (s2y). (1)

2.2. A class of (unadjusted) test statistics

We denote by PQ(N) the @-distribution of Xy, ..., Xy. For any sequence {Y(N )} ~>1 of random variables
having the form YV) = gn(X1,...,XxN), we use the pointwise notation yWw) = oéN)(q,ﬂ) under PO(N),
1fP [|Y (M| > d(log N)?] = o(N~%) as N — oo for some d >0, ¢ > 0 and § > 0.

A crucial point of the N~!-asymptotic theory in this paper is that using Bhattacharya and Ghosh’s
(1978) argument and Taniguchi (1991a; page 76), @i\ﬁ) (and 51(\/][\[13) is well-defined as the local maximum
point (lying in an ™-neighborhood of the true parameter 87 € @; V) o« N~=1/2(log N)'/2) of the
unrestricted (and restricted) log-likelihood with Pe(fv )-probability 1 — o(N~(+3/2)) for some § > 0F. For
any (nonrandom/random) scalar or vector or matrix function @Q(-), we use the notation @, @ and Q

. ~ 0
instead of Q(Ol(v][VL)), Q(Bi\ﬁ)) and Q(8"), respectively, where 87 = < 9%1)0

) € ©, with 9}2) being the
@)

irrelevant true value of the nuisance parameter 6 ).

Following Kakizawa (2012b), we consider a class 7y of test statistics for testing the null hypothesis
01y = 01y against O(;) # 61y, as follows: Every test statistic TW) = Tn(X1,.. s XN;001y0) € Ty
admits a stochastic expansion of the form

1
TWN) = Tg(ﬁ) e m (1 +&,6)  for some fixed > 0 and ¢ > 0 (2)
(we emphasize that TS(]Z) = Téﬁ)(éi\ﬁ)) is also a feasible statistic), where
F(N) _ (7 (N) 7N GG g - -
~71 ~
T3rd - (Z(l) )/ (11 Q)Z(l) N1/2 (CblebS H 11 2 b + Cblbz,k1/€2 klkz H (11 2 )
9 4 N 3 _
Gggg Nnggg 7 (N) Nnggg (N) -1 (V)
+N{ babsbi H (11 22 + (DY 0 kaka Zhnks + Db oot kikoks Zh1hoks) L1 [P V1220 lbs
i=1 i=1
2
+Dbglg2,k1k2,k3k4 k1k2 k3k4 H 11 2) } (3)

(hereafter, [v]; sometimes stands for the ith element v; of any vector v),

Cglaggagg( ) ]1]2]3( )gjl,(n( )gj27a2(')gj3,a3(') ) Caglag%klkg(') = Cj1j2,k1k2(')gj1,a1(')gjz,az(')

(we adopt similar definitions for DI 9 9 9 (), D9 9 9 (), DY 99 () and Da1a2 Ky ko sk (). Here,

aijaza3aq aijazas, k‘lkg ajazas, k1k2k3
B, &, C-functions; Cj, j,j5(-) and Cj, jy kiko (), D-functions; Dy, jojaia(+)s Diyjajaderks () Dijrjojakikeks (+) and

#Technically, we need §,& > 0 for the power analysis (Section 4) under a sequence of local alternatives § = 01 + N —1/2p,

Assuming the usual regularlty conditions, we obtained the stochastic expansions of g(N and 91(\/[11 , as well as the connection

between ‘/9\1(»]1\;4 and 9 . The details are found in Kakizawa (2012b).



D\ i krks ksks (-) may vary from one test statistic in 7 to another, where these C(or D)-functions are of
class C?(©) (or C'(©®)). Without loss of generality, we assume that Cj,j,js(-)s Cjrjokika (*)s Diijnjaja ()
Djyjogaderks()s Diijajakikoks () and Dy gy gk ksks () are symmetric under permutation of {71, j2, js,ja}
and that Dj, j, kikeksks (-) = Djijo kskakiks (+). Notice that this class 7y includes, in particular, the LR,
Rao’s and Wald’s test statistics (the respective C, D-functions are found in Kakizawa (2012b)), as well as

(V)
. . 0
Terrell’s gradient test statistic defined by grad ™) = (Zg))’Nlﬂ(Bgl)v[L—O(l)o) with 91(\/][\2 = ( Ag}%\/m ) .
(2)ML

2.8.  Cordeiro-Ferrari adjustment

We write
LGG¢ 1 GG¢ Gg g

¢ a1a2a3( )= 3! Z {Ca1a2a3( )+ Ca1a2 kle( g k1k27a3(')}

" {ai1aza3}
=8980+ 8088 1 OO

aiazas 3 aiazkiks kikz,az\ />

1GGGG 1 Gagg¢ g g g

D a1a2a3a4( ) 4! Z {Da1a2a3a4( ) + Da1a2a3 klkz( ) Vkiks, a4( ) + Da1a2a3 kleks( ) k1k2k3,a4(')

" {a1a2aza4}

+Dg1g27/€1k27/€3k4 (.)l/klk%gS (.)yk3k4,g4 ()}

_ 16GGG 4) (hoog G Ggg g
- Da1a2a3a4(') + T {Da1a2a3,k1k2(')Vklkg,cm(.) + Da1a2a3,k1k‘2k3(')Vk1k2k3va4(')}

(6) g g g
+? Da1a2,k1k2,k3k4(.)yklk%as(')Vk3k4,a4(.) ’

which may vary from one test statistic in 7y to another, where > ¢, ,.1 stands for the summation over

R! permutations of {aj,...,ar}. The meanings of these notations are apparent by rewriting
7(N)  _ (Z(N) ~ o1 z) 5 G gl zN) _
Z]l JR T (Zjl---jR o l/jl---ijbRJrl[ (11 2)Z(1) ]bR+1) + l/jl...jR,bR+1[ (11 Q)Z(l) ]bR+1 , R=23

in (3). Also, it is customary to define
k.k'
Mj1j2,j3j4(') = Vj1j27j3j4(') - Vj1j2,k(')’/ ’ (')Vj3j4,k’(’) )
k.k'
‘/\/jjlj27j37j4(') = Vj1j27]'3,j4(') - Vj1j2,k(')y ’ (')Vj37j4,k’(')7

corresponding to Covg™ (Z3-17(0), 2 (6)) and NV2Cum™ (21 (0), 21 (8), ) (6)), where

Z+N) (0) = 2N () — v, k(O (0)247(8) .

J1---JR J1--JR

For our derivation, it is helpful to use the null covariances
N N N N
Covy(2™)(8), 2 (0)) = Covy™ (23,7 (0), 2 (6) = 0

(N)

(i.e., the variance matrix of [Zg(N)(B)]a:L.“,pl, (27 (0)]r=py+1,....p and [Z J'(N)(O), Z+0)

Ji Ji'i" (0)]373 n3"e{l,....p}
under PG(N) is block diagonal), where
N) N
Z9MN(8) = 2N (8) = va,s(0)35) (0) 25" (8) = G;.4(0) 2, ().

Proposition 1 (Kakizawa (2012b)) The Cordeiro-Ferrari adjustment for T!N) € Ty is given by

CF(N) 2 3 (N)\2 3g'P (N) b (N)

TCFN) _ [1_ £ T2 P2 p@y P 4
| N{pl(p1+2)(p1 +4)( ) pi(p1 +2) p1 j @

(the author has obtained the closed-form expressions for fEP(-) = —I‘bcllbjg( )V(bllf;)(-), CD() and 3§ (4)).



It is well known (see Introduction) that the LR test statistic LR(Y) = 2(£Z(V) — £(M) is Bartlett
correctable. Proposition 1 indicates that Rao’s test statistic R(Y) = (ZE]\;))’~(111 Q)ZEA;) is also Bartlett

1
correctable if Vj17j27j3(') = Vj17j27j37j4(') =0, j1,J2,J3,Ja € {1,...,p} (in that case, 52 ()= ﬁ?() =0).

3. Generalized Cordeiro-Ferrari adjustment

Our primary goal is to propose, as the alternative to TF(V) (see (4)), an improved test statistic of the

form

TGCF(N) _ T(N Z Fbl bRH (112 (5)
=2,4,6

where functions I'y, 4, (+)’s are of class C1(®). Without loss of generality, we assume that for R = 2,4, 6,
Lo, ap(+) is symmetric under permutation of {ai,...,ar}. In what follows, we will give necessary and
sufficient conditions on I'r(:) = [Cay..ag(lar,....anef1,...p1}> B2 = 2,4,6, such that

P\MTGOF™N) < 4] = Prx?, < a] +o(N 7).

Recall that

N I (v
TV = yMyet o™+ + <7 os (1 + min(§/2, ), max(5/2, 5)) ,
where
U(gN) (N)+N1/2U (N)+ UCD( )7 azlv"'vpl
are polynomials in [Zg(N)]a:17...7p1, [ZT(N)] —p1+1,..pand [Z [ J‘(N) ijﬁj.v)]] i/,j"e{1,...,p}» as shown in Kakizawa

(2012b). Then, we first show that (5) admits the stochastlc expansion

Dou6(N Tou6(N 1 N
TN = gy My Uy N s o (1 -+ min(6/2, ), max(5/2, ) (6)
with
I.46(N) N) g ~1 (N)
Ua2’4’6 U( Z Fbl br_1a H[ (11 2) (1) ]bia a=1,...,p1.
N g2 2,4,6 i=1

We next compute the null cumulants (up to o(N~1))

C
T N Rgq _
( )[U 2,4,6( )] N1}2+O(N 1)’
COU( )(UF246(N) UF246(N)) — ﬁaclem Q I /T bt
— Y(11-2)a a2 + N + N ( aiaz +< > bb/alagy(ll,Q)

bib,  bo,b _
+<]‘5>Fb1b’1b2b/ a1a (111 2) (121 2)) + O(N 1)7

C
Cum(N)(UF246(N) UF“G(N)) _ Bavaza +o(N71),

N1/2
C (N) UF246(N) UF246(N) . w @ T 10)T b N- 1
umg ( )= N + N ( arazazas T (10) b a1azazasV (11 2)) + of )

Cum) (Ua o™ Uzt ™)y — (N,

|
C'um(N)(UF2 4 G(N) ... UF2 - G(N)) @ Lajasazasasas + o(N7)

N
(the closed-form expressions for K< ’s, /@51%2’8, /ﬂ%%%’s, /ﬁaclj?%as a, 8 are found in Kakizawa (2012b)).

In this way, we can obtain the N ~!'-asymptotic expansion of Pe(fv )[ F2.4.6(N) Elll{ 2 Up T2.4.6(N) < x| via the

valid N~!-Edgeworth expansion of (U] >* s UIDFIQ""G(N))’ (see e.g. Bhattacharya and Ghosh (1978)).
By virtue of Chibisov’s (1972) lemma applied to (6) (see also Magdalinos (1992)), we finally have



Theorem 2
N z 2 _
PR <) = [ gy, (0t = 55 (17 2 0p102(@) + 75 gy 4(@) + 750 g 0(a)} + 0N
where

CDI'y _ CD b1,b2 CDTy _ qCD bi,b2 | b3,ba
7T = T o0,V 1) ™2 = B2 + 3lbibabsbaY(11.2)V(11.2) »

CF6 . b1,b2  bs,bs  bs,bs
= B5 + 15T by bybsbabsbe (11-2)Y11-2)"(11-2) -

In case Of p1 > 1 inﬁnitely many functions [Fa1a2(') Fa1a2a3a4(') Fa1a2a3a4a5a6(')]m,az,as,a4,a5,a6€{1,...,p1}

that satisfy 7TCD T2 — 7TQC DT4 CF 6 =0 give rise to an improved test statistic.

Example 1 The original Cordeiro-Ferrari adjustment (4) is a special case of

NI 0 V. poren BP0 B) | |
aiag ( ) V(11-2)a1,a2( ) ) a1a2a3a4( ) - 09 3 V(11-2)a1,a2( )V(11-2)a3,a4( )7

CE.C ():_@@

a1a2a3a405a6 ©3 15 V(11-2)a1,a2 (')V(11-2)a3,a4(')V(ll-Q)as,aa(') , Q1,02,03,04,05,06 € {17 s 7p1} )
where 1 = p1, 2 = p1(p1 +2) and 1 = p1(p1 + 2)(p1 +4).

Example 2 For any symmetric matrix function A(-) = [Aa,a5(")]as,a2e{1,...p1}> With Ag e, (+)’s being of
class C'(@®), one may considertt

ACD ICD( ) . ACD _ ( ) Q . .
a1a ( ) - ¢A() Aa1a2( ) ) Fa1a2a3a4( ) - ¢2 ( ) 3 Aa1a2( )Aa3a4( ) )
Fflcaga3a4a5a6(') = _Z:;}E; <1—5> Aalag(')Aa3a4(')Aa5a6(‘) ,  G1,02,03,04,05,06 € {17 cee 7p1} )

provided that

61(6) = tr{A Bk, (0)) # 0. 65(60) = [tr{AO)v ]y (O))] + 26 [{AB) L) (6)}2] 0,
03(0) = [tr{ A (O} ) (O} + Bltr{A(O)v ;L o) (O} [{AB)V L) (6)1] + Bl{A(O)r ) ) (8))F] # 0

for all @ € ©. For examples, we set A(-) = ' for any nonzero constant vector v € RP! to define the

adjustment
1~—1 Z(N)e -1 ~(N) 4 -1 ~( )\2
aory _ vy 2 (20 PainZ0) | sop YPa1920))" | xep (Pa19Z0))
T’Y =T { 3 > 1 3 + ﬂZ y~—1 2 + ﬂl ~—1
N 15( (11 2)7) 3(7 (11 2)7) (7 1/(11 2)7)

Example 3 Instead of the one-parameterization stated above, the equation 7TCF6 = 0 has the solution
T6(-) = TC(-) (similar discussions about the solution of 75774 = 0 or #¢P12 = 0; Ty(-) = I3¢P(.) and
o) =TGP() = [19D (. Na1,azeq1,...p} are possible), where the elements of I':¢(-) are given by

aiaz

1

I ():—5

aiazazaqas5a6 ai,a2,a3 aijazas3 a4,0a5,06 aqa50a6

Y 8 LE0 60 (Mg L5, 0) +6C LS ).

{a1a2a3a4a50a6}

The resulting adjustment involves the term —N~ 1{(1/6)(~bg1 52 %3 C+bglg£3) S 17 611 2)~(N)]b} unlike
Kakizawa (2012a,b) with the N~'/2-correction —2N*1/2(1/6)(17bg 52 gbg C+glg£3) [1/(_111 Q)NEI))] by -

#In principle, it is possible to use different matrix functions [, Aq;as (ar,ase{1,..op1}s v =1,2,3.

.....



Remark 1 For the case LRW) = 2(£(V) — Z(N)), it turns out that w5 4 = W:I;R’FG = 0 by letting

TCoyasasas () = Tayasasasasas () = 0 (note that mal wn.as = ”5§a2,a3,a4 = 0, a,az,as,aq € {1,...,p1}).

Then, the adjustment for the case A(-) = v(11.9)(+) yields the traditional Bartlett adjustment

~LR ~LR
p (V) _ L) & P N1 7 () L
(1+ = JLRY) = LR™) 4 v @0 P20y + o (L+8/2:3/2).

whereas another idea of choosing A(-) = v+, hence the additive adjustment

1~—1  Z(N)\2
ALR®) = LRW) 4 py 5HR (YPa19Z0))
Y

for any v € R”* — {0,, }
~_1 p1J>
N7/V(11-2)'7

is found in Kakizawa (2011). Kakizawa (2012b) also gave the other additive adjustments in the form

2

2
LR(N) + N ( blb2 b152 H (11 2
ALRW) = ) i=1
LR 4+ 2 = Z TLR H[ -1 (N)]
N bib2 V1.2 (1)

=1

TGCF(N)

4. Asymptotic expansion of under a sequence of local alternatives

It is straightforward (but tedious) to obtain the non-null cumulants of ULy up to o(N~!). Then?

Theorem 3

(N) GCF(N) F2,4,6(N) a,b 24 G(N) -1
Foren-v2 0,y > a] = Pyt n-1r2, 0, 1Ua V1.2 Us >z +o(N7)
2 2 kY4
=1 — Gy, (z;hiyyva19h) + Y N2 > 780 Gy 20 (5 hiva1gha))
/=1 =
+o(N71),
. C
having the forms 7T§ ) = ﬁi} + 77([?2], ﬂél) = 712[5]1) + 77%?2]7 ng) 7T3[:(3]1),
- (2) _ _CDr C(2) (2) (2)
=T ) +7T1[4} + g
7r§2) = 7§PTs 4 (T, + 7T2 }+ 7204(1]2) + Wé?é] ’
2 CD(2 (2 (2
7r§ ) = 7§Te + {Gwab/u(H 2) T g9 )} + 7y i]) + Wg[é]) ,
.(2) A5T b1,b} b2, Cc(2) T C(2)
7y = {450 cop, v, babh¥(11.-2) (11 2) + Ty b+ {Tocos + 774 } + Ty o

C(2
{15Foooobb’7/(11 2) + 7T5[4 } +m ((3]) )

7%(?) {PMM+ 5 (M) )’}

(the symbol [i] means that the coefficient is a homogeneous polynomial of degree i in h(;y € RP!).

TKakizawa (2012a) obtained

. 1 rr! 1

Wil) = 75 (l/r'r/,i + V’r,'r/,g) (22) - 6 (37/55% + 2l/<g>%<g>) + 5 2 (2]/00 s+ V.<g><g>)

. 1 ggg 1 . 1 Ggg

ﬂél) = 5 ( g%g/ + 60+<>bb/) (bl}; 2) + 6 Vggg, 77:(),1) = 6 (Vg,g,% + 60+<><><>)

where we write Q..o... = Q...j..hj and Q...c... = Q...a...ha.

to discuss the N71/2-asymptotic theory under Pé)(lf\i:N—l/Qh’ .........



Incidentally, if one specializes to the scalar case in the absence of nuisance parameters (p = p; = 1)
and I'y = T'y = T's = 0, the above expressions are in agreement with the findings of Taniguchi (1991b)
(see also Rao and Mukerjee (1997)). We also have the asymptotic expansion of

3C 3CD  3CD
(V) (V) 2 (B 5 Do I _ o) CR(V) .
P91+N71/2(h21),%2), [T > {H—N (@3 x°+ . x+—<p1 )}x} = P9T+N*1/2(h21),0;2)/[T > z]+o(N ™)
CF,CD CF,CD CF,C
as a special case of Theorem 3 with 7T10DF2 = 7r20 Dy = 7r30 Fe ™ — 0, where
crep . BEP
Lo = _p—1 (h(1)V(11-2)h(1)) )
, QQCD
CF,CD _
6L Sopiy Vg)m) = _p% ( 21)”(11-2)}1(1)) )
CR.C bbb 305
45Foob1b’1b2b’2V(11-12)V(11-22) T ( /(1)V(11-2)h(1)),
[CE.OD _ psP (W1 1oy ) )2
0000 ppr+2) W (12t
PR . - (h{yyva12)ha))?
©0ooobb’ ¥ (11-2) p1(p1 + 2) m¥a12)t()) >
D ooose0 = = % (h{;y¥(11.2)h())’
°0000 T T pi(py + 2)(py +4) - DT AT

So, unless p; = 1, the N~!-local power of the Cordeiro-Ferrari adjustment (equivalently the N~!-local
power of the size adjusted test based on the Cornish-Fisher expansion of the percentile) generally depends
on the C, D-functions associated with T") € Ty, which contrasts with Rao and Mukerjee (1997).

Using the idea of Example 3, we observe that the N~!-local power of the test TGCF*(N) X1201 is
independent of the D-functions associated with T™N) € Ty, where

9 2 N B 4 B N 6 B
GCFx(N N CD ~—1 7(N) *CD ~—1 (N) *C ~—1 7(N)
T M) =7 4 N(Pbﬂ?z [V(11.2)Z(1) Jbi + T51b5bsb4 H[V(11-2)Z(1) Jo: + T ibabgbabsbe H[V(11.2)Z(1) ]bz)
i=1 i=1 i=1
or
2 4 6 B

92 ~ - ~ -

N cD ~—1 7Z(N) CD ~—1 (™) AC ~—1 Z(N)

T( ) + N(Fbﬂu [V(11-2)Z(1) ]bi + ]-_‘)l:1b2b3b4 H[V(ll-Q)Z(l) ]bi + Fb1b2b3b4b5b6 H[V(lla)z(l) ]bz) .
i=1 =1 =1
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