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Introduction of general distributions on sphere and torus in
view of time series spectra
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SUMMARY

There are various fields where observations are taken on directions in three dimensions, e.g., 10

sphere and torus. Here we will introduce a very general family of distributions on sphere and
torus by use of time series spectra, which includes a lot of proposed classical one as special
cases. Because time series spectra can be described by a lot of famous parametric models, e.g.,
AR, ARMA etc., we can develop the systematic model selection in this field by use of AIC, BIC,
etc. Applications are very wide. 15
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1. INTRODUCTION

There are various fields where observations are taken on directions in three dimensions, e.g.,
molecular biology and physics. The von Mises-Fisher distribution is very fundamental with prob-
ability density function 20

f(x) = c(κ,µ)−1 exp [κµTx], x ∈ S2, (1.1)

where S2 = {x ∈ R3 : ‖x‖ = 1}, µ ∈ S2 and c(·) is the normalizing constant (e.g., Mardia and
Jupp (2000)). The Fisher-Bingham distribution is given by density

f(x) = c(κ,µ,A)−1 exp [κµTx+ xTAx], (1.2)

where A is a symmetric 3× 3 matrix (Mardia (1975)). For a special choice of µ and A, Kent
(1982) derived a polar co-ordinates form of (1.2) by

f(θ, φ) = c(κ, β)−1 exp [κ cos θ + β sin2 θ cos 2φ]. (1.3)

Kato and McCullagh (2020) introduced a Cauchy family of distribution by density 25

f(x) = c(ρ,µ)−1[
1− ρ2

1 + ρ2 − 2ρµTx
], x ∈ S2. (1.4)

For modelling of torsional angles of molecules, Singh et al. (2002) introduced the following
distribution on torus by

f(θ, φ) = c exp [κ1 cos (θ − µ1) + κ2 cos (φ− µ2) + λ sin(θ − µ1) sin(φ− µ2)], (1.5)
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where −π ≤ θ, φ ≤ π, κ1, κ2 ≥ 0, −∞ < λ <∞, −π ≤ µ1, µ2 ≤ π and c is a normalization
constant. Also, Kato and Pewsey (2015) introduced the following wrapped Cauchy type distri-
bution by density30

f(θ, φ) =c[c0 − c1 cos (θ − µ1)− c2 cos (φ− µ2)− c3 cos(θ − µ1) cos(φ− µ2)
− c4 sin(θ − µ1) sin(φ− µ2)]−1, (−π ≤ θ, φ ≤ π), (1.6)

where ci and µi are constants.
For circular data, the wrapped Cauchy density is often used, and is defined by

fW (ω) = c
1

1 + ρ2 + 2ρ cosω
, ω ∈ [−π, π]. (1.7)

Time series people understand that this is exactly the AR(1) spectral density35

fS(ω) = c
1

|1 + ρeiω|2
, ω ∈ [−π, π]. (1.8)

Motivated by this, Taniguchi et al. (2020) introduced a very general family of joint circular
distributions by a higher order spectral density

fS(ω1, ω2, . . . , ωn), ωk ∈ [−π, π], (1.9)

which can be decomposed to

n∏
k=1

fS(ωk), (1.10)

if ω1, ω2, . . . , ωn are independent, where fS(ωk) is the spectral density of frequency ωk. Ad-
vantage of this approach is that we can introduce time series models for fS(ωk), i.e., AR(p),40

ARMA(p, q) models etc., then the systematic model selection in this field can be carried out.
In this paper, for distributions on sphere and torus, in view of above, we will introduce a very

general family of the distributions by time series spectra, whose forms will be

f(θ, φ) =
∞∑

k=−∞
{Akeik(θ+φ) +Bke

ik(θ−φ) + Cke
ikθ}

for (θ, φ) ∈ S2. f(θ, φ) is the sum of time series spectra, hence, we may use ARMA(p, q) mod-45

elling etc. We can develop the model selection by use of AIC and BIC etc. Discussion on torus is
similar. The applications are in various fields.

2. DISTRIBUTIONS ON SPHERE

In this section we introduce a very general distribution on sphere in view of time series spectra.
Let the 3-dim polar representation be given by50 

x = sin θ cosφ;

y = sin θ sinφ;

z = cos θ.

(2.1)
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Substituting

{
cos θ = eiθ+e−iθ

2

sin θ = eiθ−e−iθ

2i

to (2.1), we obtain


x = eiθ−e−iθ

2i × eiφ+e−iφ

2 = ei(θ+φ)−e−i(θ+φ)+ei(θ−φ)−e−i(θ−φ)

4i ; (2.2)

y = eiθ−e−iθ

2i × eiφ−e−iφ

2i = ei(θ+φ)+e−i(θ+φ)−ei(θ−φ)−ei(φ−θ)

−4 ; (2.3)

z = eiθ+e−iθ

2 . (2.4)

Let δk =

{
1
4i , k = 1
−1
4i , k = −1

, γk =

{
−1

4 , k = 1

−1
4 , k = −1

, and ηk =

{
1
2 , k = 1
1
2 , k = −1

. Then we can see

that

x =
∑
k=±1

δk{eik(φ+θ) + eik(φ−θ)}; (2.5)

y =
∑
k=±1

γk{eik(φ+θ) − eik(φ−θ)}; (2.6) 55

z =
∑
k=±1

ηke
ikθ. (2.7)

Next we introduce general Fourier coefficients:

(i) pure imaginary coefficient ak = −āk satisfying a−k = −ak;
(ii) real coefficients bk, k ∈ Z, b−k = bk;

(iii) real coefficients ck, k ∈ Z, c−k = ck. 60

It is seen that

[
∑
k=±1

ak{eik(φ+θ) + eik(φ−θ)}+
∑
k=±1

bk{eik(φ+θ) − eik(φ−θ)}+
∑
k=±1

cke
ikθ] sin θ (2.8)

corresponds to the part µTx in the von Mises-Fisher distribution (1.1) and Kato-McCullagh
distribution (1.4). Here sin θ is the Jacobian. Because eik(φ+θ), eik(φ−θ) and eik(θ) are Fourier
basis at frequency φ+ θ, φ− θ and θ, it is natural to think of the strength of these frequencies
by the spectral densities 65

fS(θ, φ) = [
∞∑

k=−∞
ak{eik(φ+θ) + eik(φ−θ)}+

∞∑
k=−∞

bk{eik(φ+θ) − eik(φ−θ)}+
∞∑

k=−∞
cke

ikθ] sin θ.

(2.9)
Mardia (1975) introduced the Fisher-Bingham distribution (1.2) which includes κµTx+
xTAx. Hence, in (2.5) and (2.6), if we consider x2 − y2, it is not difficult to see that (2.9)
becomes

[fS(θ, φ) +

∞∑
k=−∞

dke
ikφ] sin θ. (2.10)

Therefore we can introduce our very general family of distributions on sphere as follows.
For a smooth function H[·], we propose 70

FS(θ, φ) = H[
∞∑

k=−∞
(Ake

ik(θ+φ) +Bke
ik(θ−φ) + Cke

ikθ +Dke
ikφ)] sin θ, (2.11)
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as a probability density on sphere, where Ak, Bk, Ck and Dk are complex-valued, and
FS(θ, φ) ≥ 0 so that

∫
FS(θ, φ) dP = 1.

3. DISTRIBUTIONS ON TORUS

In this section we introduce a very general distribution on torus T in view of time series
spectra. Let the 3-dim polar representation be given by75 

x = R cos θ + r cosφ cos θ

y = R sin θ + r cosφ sin θ

z = r sinφ

, (0 ≤ θ, φ ≤ 2π). (3.1)

Write

{
cos θ = 1

2(eiθ + e−iθ)

sin θ = 1
2i(e

iθ − e−iθ)
, then we have

x = R
1

2
(eiθ + e−iθ) + r

1

4
(eiφ + e−iφ)(eiθ + e−iθ)

= R
1

2
(eiθ + e−iθ) + r

1

4
(ei(θ+φ) + e−i(θ+φ) + e−i(φ−θ) + ei(φ−θ)); (3.2)

y = R
1

2i
(eiθ − e−iθ) + r

1

4i
(eiφ + e−iφ)(eiθ − e−iθ)80

= R
1

2i
(eiθ − e−iθ) + r

1

4i
(ei(θ+φ) − e−i(θ+φ) + e−i(φ−θ) − ei(φ−θ)); (3.3)

z = r
1

2i
(eiφ − e−iφ). (3.4)

Similarly as in Section 2, we propose a very general family of distributions on T by

g(θ, φ) ∝ [
∞∑

k=−∞
ake

ikθ +
∞∑

k=−∞
bke

ikφ +
∞∑

k=−∞
cke

ik(θ+φ) +
∞∑

k=−∞
dke

ik(θ−φ)]|J |. (3.5)

{ak}, {bk}, {ck}, {dk} are complex-valued coefficients, and are chosen so that g(θ, φ) is real-
valued. Here |J | = r(r cosφ+R), the Jacobian.85

Singh et al. (2002) introduced the distribution on T by (1.5). We can see that the exponent is
of our form (3.5). Also Kato and Pewsey (2015) introduced the distribution on T by (1.6). It is
seen that the inside of the reverse function is of our form (3.5).

Hence we introduce our very general family of distributions on T as follows.
For a smooth function G[·], we propose90

FT (θ, φ) ≡ G[
∞∑

k=−∞
(A′ke

ik(θ+φ) +B′ke
ik(θ−φ) + C ′ke

ikθ +D′ke
ikφ)]|J |, (3.6)

as a probability density on T, where A′k, B′k, C ′k and D′k are complex-valued, and FT (θ, φ) ≥ 0
so that

∫
FT (θ, φ) dP = 1.

4. SUMMARY AND CONCLUDING REMARKS

We could introduce a very general distributions on S2 and T by time series spectra (2.11)
and (3.6) respectively.The advantage is that we can develop the problem of model selection95
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systematically because the time series spectra have a lot of famous finite parametric models,
e.g., AR, MA, and ARMA models, i.e., for modelling, we can use

F (θ, φ) = H[s1f
(1)
ARMA(θ + φ) + s2f

(2)
ARMA(θ − φ) + s3f

(3)
ARMA(θ) + s4f

(4)
ARMA(φ)],

where s1, . . . , s4 are real constants and f (j)ARMA are ARMA spectral densities (e.g., Taniguchi and
Kakizawa (2000)). Hence we can use AIC, BIC etc to select the model, which enriches applica-
tions for data from S2 and T. Also, the systematic asymptotic estimation theory will be possible 100

(e.g., Taniguchi and Kakizawa (2000)).
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