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Abstract 
Statistical two-group comparisons are widely used to identify the significant 
differentially expressed (DE) signatures against a therapy response for micro-
array data analysis. We applied a rank order statistics based on an Autoregres-
sive Conditional Heteroskedasticity (ARCH) residual empirical process to DE 
analysis. This approach was considered for simulation data and publicly available 
datasets, and was compared with two-group comparison by original data and 
Auto-regressive (AR) residual. The significant DE genes by the ARCH and AR 
residuals were reduced by about 20% - 30% to these genes by the original data. 
Almost 100% of the genes by ARCH are covered by the genes by the original 
data unlike the genes by AR residuals. GO enrichment and Pathway analyses 
indicate the consistent biological characteristics between genes by ARCH re-
siduals and original data. ARCH residuals array data might contribute to re-
fining the number of significant DE genes to detect the biological feature as 
well as ordinal microarray data. 
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1. Introduction 

Microarray technology provides a high-throughput way to simultaneously inves-
tigate gene expression information in a whole genome level. In the field of can-
cer research, the genome-wide expression profiling of tumors has become an 
important tool to identify gene sets and signatures that can be used as clinical 
endpoints, such as survival and therapy response [1]. When we are contrasting 
expressions between different groups or conditions (i.e., the response ispoly-
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tumous), such important genes are described as differentially expressed (DE) [2]. 
To identify important genes, a statistical scheme is required that measures and 
captures evidence for a DE per gene. If the response consists of binary data, the 
DE is measured using a two-group comparison for which such statistical methods 
as t-statistics, the statistical analysis of microarray (SAM) [3]), fold change, and 
B statistics have been proposed [4]. The p-value of the statistics is calculated to 
assess the significance of the DE genes. The p-value per gene is ranked in as-
cending order; however, selecting significant genes must be considered by mul-
tiple testing corrections, e.g., false discovery rate (FDR) [5], to avoid type I errors. 
Even if significant DE genes are identified by the FDR procedure, the gene list 
may still include too many to apply a statistical test for a substantial number of 
probes through whole genomic locations. Such a long list of significant DE genes 
complicates capturing gene signatures that should provide the availability of ro-
bust clinical and pathological prognostic and predictive factors to guide patient 
decision-making and the selection of treatment options.  

As one approach for this challenge, based on the residuals from the Autore-
gressive Conditional Heteroskedasticity (ARCH) models, the proposed rank or-
der statistic for two-sample problems pertaining to empirical processes refines 
the significant DE gene list. The ARCH process was proposed by Engle [6], and 
the model was developed in much research to investigate a daily return series 
from finance domains. The series indicate time-inhomogeneous fluctuations and 
sudden changes of variance called volatility in finance. Financial analysts have 
attempted more suitable time series modeling for estimating this volatility. 
Chandra and Taniguchi [7] proposed a rank-order statistics and the theory pro-
vided an idea for applying residuals from two classes of ARCH models to test the 
innovation distributions of two financial returns generated by such varied me-
chanisms as different countries and/or industries. Empirical residuals called “in-
novation” generally perturb systems behind data. Theories of innovation ap-
proaches to time series analysis have historically been closely related to the idea 
of predicting dynamic phenomena from time series observations. Wiener’s theory 
is a well-known example that deems prediction error to be a source of informa-
tion for improving the predictions of future phenomena. In a sense, innovation 
is a more positive label than prediction error [8]. As we see in innovation distri-
bution for ARCH processes, it resembles the sequential expression level based on 
the whole genomic location. For applying time indices of ARCH model to the 
genomic location, the time series mining has been practically used to DNA se-
quence data analysis [9] and microarray data analysis [10]. To investigate the 
data’s properties, we believe that innovation analysis is more effective than anal-
ysis just based on the original data. While the original idea in Chandra and Ta-
niguchi [7] was based on squared residuals from an ARCH model, not-squared 
empirical residuals are also theoretically applicable, as introduced in Lee and 
Taniguchi [11]. In this article, we apply this idea to test DEs between two sample 
groups in microarray datasets that we assume to be generated by different bio-
logical conditions. 
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To investigate whether ARCH residuals can consistently refine a list of sig-
nificant DE genes, we apply publicly available datasets called Affy947 [12] for 
breast cancer research to compare significant gene signatures. As a statistical test 
for two-group comparisons, the estrogen receptor (ER) is applied in clinical out-
comes to identify prognostic gene expression signatures. Estrogen is an impor-
tant regulator of the development, the growth, and the differentiation of normal 
mammary glands. It is well documented that endogenous estrogen plays a major 
role in the development and progression of breast cancer. ER expression in 
breast tumors is frequently used to group breast cancer patients in clinical set-
tings, both as a prognostic indicator and to predict the likelihood of response to 
treatment with antiestrogen [13]. If the cancer is ER+, hormone therapy using 
medication slows or stops the growth of breast cancer cells. If the cancer is ER-, 
then hormonal therapy is unlikely to succeed. Based on these two categorical 
factors for ER status, we applied our proposed statistical test to the expression 
levels for each genomic location. After identifying significant DE genes, biologi-
cal enrichment analyses use the gene list and seek biological processes and in-
terconnected pathways. These analyses support the consistency for refined gene 
lists obtained by ARCH residuals. 

2. Method 

Denote the sample and the genomic location by i  and j  in microarray data 

ijx . The samples for the microarray data are divided by two biological different 
groups, one group is for breast cancer tumors driven by ER + and another group 
is for breast cancer tumors driven by ER−. We apply the two-group comparison 
testing to identify significant different expression level between two groups of 
ER+ and ER− samples for each gene (genomic location). As the statistical test, 
we propose the rank order statistics for ARCH residual empirical process intro-
duced in 2.1. For comparisons with the ARCH model’s performance, we consid-
er applying the two-group comparison testing to original array data and apply-
ing the test to the residuals obtained by ordinal AR (autoregressive) model. The 
details about both methods are summarized in 2.2. For the obtained significant 
DE gene lists, biologists or medical scientists require further analysis for their 
biological interpretation to investigate the biological process or biological net-
work. In this article, we apply GO (gene ontology) analysis shown in 2.3 and 
Pathway analysis shown in 2.4, which methods are generally used to investigate 
specific genes or relationships among gene groups. 

2.1. The Rank Order Statistic for ARCH Residual Empirical  
Process 

Suppose that a classes of ARCH (p) models is generated by the following equa-
tions 

( ) ( )2 0 2
1,    for  1, ,

0,                                                              for  1, , 0

Xp i
t X t t X X X t ii

t
X

X t m
X

t p
σ θ ε σ θ θ θ −=
 = + == 

= − +

∑ 



 (2.1.1) 
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where { }tε  is a sequence of i.i.d.(0,1) random variables with fourth-order 
cumulant 4

Xκ , ( ) 10 1, , , X Xp p
X X X X Xθ θ θ θ +′= ∈Θ ⊂   is an unknown parameter 

vector satisfying 0 0Xθ > , 0i
Xθ ≥ , 1, , 1Xi p= − , 0Xp

Xθ > , and tε  is inde-
pendent of sX , s t< . Denote by ( )F x  the distribution function of 2

tε  and 
we assume that ( ) ( )f x F x′=  exists and is continuous on ( )0,∞ .  

Suppose that another class of ARCH(p) models, independent of { }tX , is 
generated similarly by the equations 

( ) ( )2 0 2
1,     for   1, ,

0,                                                           for   1, , 0

Yp i
t Y t t Y Y Y t ii

t
Y

Y t m
Y

t p
σ θ ξ σ θ θ θ −=
 = + == 

= − +

∑ 



 (2.1.2) 

where { }tξ  is a sequence of i.i.d. (0,1) random variables with fourth-order 
cumulant 4

Yκ , ( ) 10 1, , , Y Yp p
Y Y Y Y Yθ θ θ θ +′= ∈Θ ⊂   is an unknown parameter 

vector satisfying 0 0Yθ > , 0i
Yθ ≥ , 1, , 1Yi p= − , 0Yp

Yθ > , and tξ  is inde-
pendent of sY , s t< . The distribution function of 2

tξ  is denoted by ( )G x  and 
we assume that ( ) ( )g x G x′=  exists and is continuous on ( )0,∞ . For (2.1.1) 
and (2.1.2), we assume that 1 1Xp

X Xθ θ+ + <

 and 1 1Yp
Y Yθ θ+ + <

 for sta-
tionarity (see [14]). 

Now we are interested in the two-sample problem of testing 

( ) ( ) ( ) ( )0 :  for all  agains  :  for some .AH F x G x x t H F x G x x= ≠  

In this article, ( )F x  and ( )G x  correspond to the distribution for the ex-
pression data of samples driven by ER+ and ER−, individually. 

For this testing problem, we consider a class of rank order statistics including, 
such as Wilcoxon’s two-sample test. The form is derived from the empirical re-
siduals ( )2 2 2 ˆˆ ,  1, ,t t t XX t nε σ θ= =   and ( )2 2 2ˆ ˆ ,  1, ,t t t YY t nξ σ θ= =  . Be-
cause Lee and Taniguchi [11] developed the asymptotic theory for not squared 
empirical residuals, we may apply the results to t̂ε  and t̂ξ .  

2.2. Two-Group Comparison for Microarray Data 

To obtain the empirical residuals as mentioned in 2.1, the ARCH model is ap-
plied to a vector { }1 2, , ,i i iLx x x

 for the i th sample, where L  is the total 
number of genomic locations in the microarray data. Assuming that the ER+ 
and ER− samples correspond to distributions ( )F x  and ( )G x  as shown in 
2.1, orders Xp  and Yp  of the ARCH model are identified by model selection 
using the Akaike Information Criterion (AIC), where the model with the mini-
mum AIC is defined as the best fit model [15] (see 1. in Figure 1). According to 
those responses, the empirical residuals are grouped as ijε

+

 
and ijξ

− . Wilcoxon 
statistic is applied as order statistic to those two groups for each genomic loca-
tion j , and the p-value is calculated (see 2. in Figure 1). The p-values obtained 
for all genes are adjusted for multiple testing corrections using false discovery 
rate (FDR) [5] (see 3. in Figure 1).  

For comparisons with the ARCH model’s performance, the two-group com-
parison testing to original array data and applying the test to the residuals ob-
tained by ordinal AR (autoregressive) model.AR model represents the current  
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Figure 1. Complete proposed algorithm. 
 
value using the weighted average of the past values as 1

K
ij i ij k ijkx x wβ −=
= +∑ , 

where iβ , k , and ijw  are the AR coefficient, the AR order, and the error terms. 
The AR model is widely applied in time series analysis and the signal processing 
of economics, engineering, and science. In this article, we apply it to the expres-
sion data for two ER+ and ER− groups. The AR order for the best fit model is 
identified by AIC. Empirical residuals ijw+  for ER+ and ijw−  for ER− are sub-
tracted from the data by predictions. 

These procedures are finally summarized as follows: 1) take the original mi-
croarray and the clinical data for ER from one study cohort; 2) apply the ARCH 
and AR models to the original data for each sample and identify the best fit 
model among the model candidates within 1 - 10 time lags; 3) subtract the resi-
duals from the data by the prediction for the best fit model; 4) apply Wilcoxon 
statistic to the original data and to the empirical residuals by ARCH and AR; 5) 
list the p-values and identify the significant FDR (5%) corrected genes. 6) apply 
Gene Ontology analysis and pathway analysis (see the details in 2.3 and 2.4) for 
biological interpretation to the obtained gene list (see 4. in Figure 1). 

The computational programs were done by the garchFit function (in “fGARCH”) 
for ARCH fitting, by the ar.ols function for AR fitting, the wilcox.test as a rank- 
sum test, and fdr.R for the FDR adjustment in the R package. 

2.3. GO Analysis 

To investigate the gene product attributes from the gene list, Gene Ontology 
(GO) analysis was performed to find specific gene sets that are statistically asso-
ciated among several biological categories. GO is designed as a functional anno-
tation database to capture the known relationships between biological terms and 
all the genes that are instances of those terms. It is widely used by many func-
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tional enrichment tools and is highly regarded both for its comprehensiveness 
and its unified approach for annotating genes in different species to the same 
basic set of underlying functions [16]. Many tools have been developed to ex-
plore, filter, and search the GO database. In our study, Gorilla [17] was used as a 
GO analysis tool. GOrilla is an efficient web-based interactive user interface that 
is based on a statistical framework called minimum hypergenometric (mHG) for 
enrichment analysis in ranked gene lists, which are naturally represented as 
functional genomic information. For each GO term, the method independently 
identifies the threshold at which the most significant enrichment is obtained. 
The significant mHG scores are accurately and tightly corrected for threshold 
multiple testing without time-consuming simulations [17]. The tool identifies 
enriched GO terms in ranked gene lists for background gene sets which are ob-
tained by the whole genomic location of microarray data. GO consists of three 
hierarchically structured vocabularies (ontologies) that describe gene products 
in terms of their associated biological processes, cellular components, and mo-
lecular functions. The building blocks of GO are called terms, and the relation-
ship among them can be described by a directed acyclic graph (DAG), which is a 
hierarchy where each gene product may be annotated to one or more terms in 
each ontology [16]. GOrilla requires a list of gene symbols as input data. The 
obtained significant Etrez gene lists by FDR correction are converted into gene 
symbols using a web-based database called SOURCE [18], which was developed 
by the Genetics Department of Stanford University.  

2.4. Pathway Analysis 

As well as for GO analysis, the identified genes are mapped to the well-defined- 
biological pathways. Pathway analysis determines which pathways are overre-
presented among genes that present significant variations. The difference from 
GO analysis is that pathway analysis includes interactions among a given set of 
genes. Several tools for pathway analysis have been published. In this study, we 
used a web-based analysis tool called REACTOME, which is a manually curated 
open-source open-data resource of human pathways and reactions [19]. REAC- 
TOME is a recent fast and sophisticated tool that has grown to include annota-
tions for 7088 of the 20,774 protein-coding genes in the current Ensembl human 
genome assembly, 15,107 literature references, and 1421 small molecules orga-
nized into 6744 reactions collected in 1481 pathways [19]. 

3. Simulation Study 

To investigate the performance of our proposed algorithm, we performed a si-
mulation study. We first prepared the clinical indicator like ER+ and ER−. The 
artificial indicator includes “1” for 50 samples and “0” for 50 samples. Next, we 
considered two types of artificial 1000-array and 100 samples: one array data (A) 
generating by normal distributions was set. The mean and variance values of the 
distribution were set as 1.0 to generate overall array data at once. In addition, the 
array data for the 201 - 400 array and the 601 - 600 array were replaced with the 
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data generating different normal distribution with 1.8 mean and 10 variance; 
another array data (B) was generated by ARCH model. The model was applied 
to real array (DES data, see the detail in Section 4) and the parameters (mu: the 
intercept, omega: the constant coefficient of the variance equation, alpha: the 
coefficients of the variance equation, skew: the skewness of the data, shape: the 
shape parameter of the conditional distribution setting as 3) for the model was 
estimated for ER+ and ER−, respectively. We used these parameters and random 
number to generate the simulation data. For the computational programs, we 
conducted normrnd of Matlab command to generate random variables by nor-
mal distributions for array data A, and conducted garchSim of the R package 
fGARCH for array data B. We iterated 100 times to generate the two array data 
sets. To 100 data sets for A and B, we applied two-group comparison for the 
original simulation data and the ARCH residuals of them and identify 5% FDR 
significant parts. 

4. Material 

Due to the extensive usage of microarray technology, in recent years publicly 
available datasets have exploded [4], including the Gene Expression Omnibus 
(GEO, http://www.ncbi.nlm.nih.gov/geo/) [20] and Array Express  
(https://www.ebi.ac.uk/arrayexpress/). In this study for breast cancer research, we 
used five different expression datasets, collectively called the Affy947 expression 
dataset [12]. These datasets, which all measure the Human Genome HG U133A 
Affymetrix arrays, are normalized using the same protocol and are assessable 
from GEO with the following identifiers: GSE6532 for the Loi et al. dataset [21] 
(Loi), GSE3494 for the Miller et al. dataset [22] (Mil), GSE7390 for the Desmedt 
et al. dataset [23] (Des), and GSE5327 for the Minn et al. dataset [24] (Min). The 
Chine et al. dataset [25] (Chin) is available from ArrayExpress. This pooled da-
taset was preprocessed and normalized, as described in Zhao et al. [26]. Micro-
array quality-quality-control assessment was carried out using the R AffyPLM 
package from the Bioconductor web site  
(http://www.bioconductor.org [27]). The Relative Log Expression (RLE) and 
Normalized Unscaled Standard Errors (NUSE) tests were applied. Chip pseu-
do-images were produced to assess artifacts on the arrays that did not pass the 
preceding quality control tests. The selected arrays were normalized by a three- 
step procedure using the RMA expression measure algorithm  
(http://www.bioconductor.org [28]): RMA background correction convolution, 
the median centering of each gene separately across arrays for each dataset, and 
the quantile normalization of all arrays. Gene mean centering effectively re-
moves many dataset specific biases, allowing for effective integration of multiple 
datasets [29]. 22,268 is the total number of probes for these microarray data. 

Against all probes that covered the whole genome, we use the probes that cor-
respond to the intrinsic signatures that were obtained by classifying breast tu-
mors into five molecular subtypes [30]. We extracted 777 probes from the whole 
22 K probes for the microarray data-sets using the intrinsic annotation included 

http://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress/
http://www.bioconductor.org/
http://www.bioconductor.org/
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in the R codes in Zhao et al. [26]. As the response contrasting expression be-
tween two groups, we used a hormone receptor called ER, which indicates whether 
a hormone drug works as well for treatment as a progesterone receptor and is 
critical to determine the prognosis and predictive factors. ERsare used for classi-
fying breast tumors into ER-positive (ER+) and ER-negative (ER−) diseases. The 
two upper figures in Figure 2 present the mean of the microarray data by aver-
aging all of the previously obtained samples [23]. The left and right plots cor-
respond to a sample indicating ER+ and ER−. The data for ER− show more fluc-
tuation than for ER+. The two lower figures illustrate histograms of the averaged 
data for ER+ and ER− and present sharper peakedness and heavier tails than the 
shape of an ordinary Gaussian distribution.  

5. Results and Discussion 
5.1. Simulation Data 

For the simulation data and ARCH residuals, we summarized the average of the 
number of the identified 5% FDR significant parts and the number of the over-
lapped parts in Table 1. In the case of the simulation data generated by normal  

 

 
Figure 2. Upper figures: mean of expression levels for ER+ (left) and ER− (right) across all Des samples. Lower fig-
ures: histograms of expression levels for ER+ (left) and ER− (right). 
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Table 1. Summary of the average for the identified significant parts. 

 
1. Original 

series 
2. ARCH  
residuals 

Overlapped # of 2 
with 1 

Ratio for the 
overlapped # 

Array set A 30.2 29.8 29.3 98.2 % 

Array set B 512.2 338.9 212.1 62.6 % 

 
distribution, the significant number for original series and ARCH residuals in 
array sets A and B was not differ. The parts identified in A were mostly same as 
ones in B. On the other hand, in the simulation data generated by ARCH model, 
the ARCH residuals identified more significant parts from the data than the 
original series. The number of significant parts for ARCH residuals was about 
30% less than the number of significant parts for the original series. The over-
lapped number was less than the case A, however over 50% parts were covered. 

5.2. Affy947 Expression Dataset 

Based on the method explained in 3.2, the best fit AR and GARCH models were 
selected by AIC for each sample. The estimated orders of all the best fit models 
of all the studies are summarized in Supplementary Table 1. Figure 3 summa-
rizes the ratio of the sample numbers for each selected order against the total 
number of samples. These figures suggest that the most often selected orders 
were one while ER+ samples tended to take more complicated models than for 
the ER− samples. 

Using residuals obtained by the best fit ARCH and AR models and the origi-
nal data, we applied Wilcoxon statistic to compare DEs between two groups di-
vided by ER+ and ER−. The significant genomic locations were assessed by a 
FDR. The locations were mapped on Entrez gene IDs according to the Affy probes 
presented in the original microarray data and converted into gene symbols 
by SOURCE. The identified genes in the original data and the ARCH residual 
analyses are listed in Supplementary Table 2. Based on these gene lists, we 
investigated the overlapped significant genes for the original data with signifi-
cant genes for the ARCH and AR residuals and summarized the results in Table 
2. About 200 - 280 significant DE genes in the studies of Des, Mil, Min, and 
Chin were identified with FDR correction. For Loi, the significant genes were 
fewer than the other studies in all cases. Except for Loi, the number of significant 
genes for the ARCH residuals was reduced by about 20% - 35% less than the 
number of genes for the original data. The estimated genes for all the datasets 
(except for Loi’s case) overlapped 100% with the estimated genes for the original 
data. The number of significant genes for the AR residuals in the cases of Mil, 
Min, and Loi was less than the number of genes by ARCH and resulted in about 
a 20% - 35% reduction of significant genes for the original data except for Loi. 
The reduction rate was similar to the rate shown in the case B of our simula-
tion study. Furthermore, these genes for the AR residuals did not completely 
100% overlap with the genes for the original data unlike the case of the ARCH 
residuals. The results suggest that the real array data might be generated by a  
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Figure 3. Selected model’s orders. Five upper panels indicate GARCH results. Five lower panels indicate AR 
results. Vertical and horizontal axes indicate percentage of selected order toward total sample numbers and 
model’s order. Solid and broken lines correspond to ER− and ER+ samples. 

 
similar structure as the ARCH process and empirical ARCH residuals might be 
more effective to specify important genes from a list of long genes than AR resi-
duals.  

To investigate the overlapping genes by the ARCH residuals with genes by the 
original data, the corresponding cytoband and gene symbols are summarized in 
Table 3. The total numbers of common genes by the original and ARCH resi-
duals in four studies were 132 and 99. If we take into account Loi’s case, the total 
numbers of common genes across all studies for the original and ARCH resi-
duals are 12 and 9. The genes obtained by the ARCH residuals were completely 
covered by the genes obtained by the original data. The results by the ARCH re-
siduals covered several important genes for breast cancer, such as TP53 in the  
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Table 2. Summary for FDR 5% adjusted Entrez genes of five datasets. Values in paren-
theses indicate number of unique genes to avoid duplicate and multiple genes from ob-
tained gene list. Percentages for overlapped with original indicate ratios for overlapped 
significant genes for ARCH or AR residuals with significant genes in original data. 

Model Data Des Mil Min Loi Chin 

- 
Original #EntrezID 

(unique) 
245 

(186) 
238 

(176) 
274 

(195) 
53 

(47) 
277 

(201) 

ARCH 

Residual #EntrezID 
(unique) 

193 
(152) 

175 
(139) 

207 
(154) 

46 
(41) 

177 
(133) 

Overlapped with original 
[%] 

100 100 100 98 100 

AR 

Residual #EntrezID 
(unique) 

194 
(152) 

161 
(131) 

183 
(141) 

37 
(34) 

178 
(139) 

Overlapped with original 
[%] 

95 99 87 92 98 

 
chromosome 1q region, ERBB2 in the chromosome 17q region, and ESR1 in the 
chromosome 6q region, even if the number of identified Entrez genes was less 
than the number of identified genes from the original data.  

Next, we performed GO enrichment analysis using significant DE gene lists 
for the original data and ARCH’s residual analyses in all studies. To correctly 
find the enriched GO terms for the associated genes, a background list was pre-
pared of all the probes included in the original microarray data. The Entrez 
genes in the background list were converted into 13,177 gene symbols without 
any duplication by SOURCE. As the input gene lists to GOrilla, the numbers of 
summarized unique genes are shown in the parentheses of Table 2. All the asso-
ciated GO terms for the original and ARCH residuals in all the studies are sum-
marized in Supplementary Table 3. Since the estimated gene symbols in Loi’s 
case were less than half of the amount taken in other studies, few associated GO 
terms were identified in the biological process and cellular component and no 
GO terms in the molecular function. Also, significant DE genes for the ARCH 
residuals contributed to finding additional associated GO terms that did not ap-
pear in the GO terms for the original data, e.g., mammary gland epithelial cell 
proliferation for Des, a single-organism metabolic process for Des, an organoni-
trogen compound metabolic process for Mil and Min, and a single-organism de-
velopmental process for Min and Chin, all of which are related to meaningful bi-
ological associations like cellular differentiation, proliferation, and metabolic path-
ways in cancer cells [16]. Table 3 summarizes the common GO terms of the 
biological processes for Des, Mil, Min, and Chin and presented 13 terms for the 
original data. The terms for the ARCH residuals mostly overlapped with them 
except for Mil’s case. As shown in Supplementary Table 3, two terms in the 
molecular function and eight in the cellular components were commonly identi-
fied by the original data. The GO terms for the ARCH residuals covered them, 
and more terms were shown in the molecular function. 

Furthermore, to investigate the consistency of the refined significant gene  
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Table 3. Identified differentially expressed genes (FDR 5%) and cytobands for ER status in original data and empirical ARCH 
residuals. 

Studies 
Original ARCH residuals 

cytoband genes cytoband genes 

Des 
Mil 
Min 
Chin 

1p13.3 
1p32.3 
1p34.1 
1p35 
1p35.3 
1p35.3-p33 
1q21 
1q21.1 
1q21.3 
1q23.2 
1q24-q25 
1q32.2 
1q41 
1q42.11 
1q42.13 
2p11.2 
2q35 
2q37.3 
3p14.3 
3p21 
3q13.1 
3q23-q25 
3q24-q25.1 
3q25 
4q12 
4q21.1 
4q28.3 
4q32.1 
4q35.1 
5q13.1 
5q14-q21 
5q22-q23 
5q31.1 
5q33.2 
5q33.3 
5q35.2 
5q35.3 
6p12 
6p21.3 
6p22.3 
6q22.31 
6q22.33 
6q22-q23 
6q23.3 
6q25.1 
7p13 
7p15 
7q21 
7q21-q31 
7q31.1 
7q36 
8p12 
8p21 
8p22 

VAV3, GSTM3, CHI3L2 
ECHDC2 
CTPS1 
IFI6 
ATPIF1 
MEAF6 
S100A11, S100A1 
PEA15 
CRABP2 
COPA 
CACYBP 
ELF3 
TP53BP2 
DEGS1 
ADCK3 
TMSB10 
IGFBP5, IGFBP2 
LRRFIP1, SNED1 
ACOX2 
MST1 
ALCAM 
CP 
GYG1 
SIAH2 
KIT, PDGFRA 
USO1 
MGST2 
GRIA2 
ACSL1 
PIK3R1 
PAM 
REEP5 
JADE2 
GALNT10 
CYFIP2 
MSX2 
GNB2L1 
MCM3, TFAP2B 
HIST1H1C 
ID4 
ASF1A 
ECHDC1 
FABP7 
CITED2 
ESR1 
BLVRA 
GARS 
FZD1 
SEMA3C 
IFRD1 
PTPRN2 
NRG1, PLAT 
EPHX2 
ASAH1, TUSC3 

1p13.3 
 
 
1p35 
1p35.3 
 
1q21 
1q21.1 
1q21.3 
1q23.2 
1q24-q25 
 
1q41 
 
1q42.13 
 
2q35 
2q37.3 
 
 
 
3q23-q25 
3q24-q25.1 
3q25 
4q12 
4q21.1 
 
 
4q35.1 
5q13.1 
5q14-q21 
5q22-q23 
 
 
5q33.2 
5q35.2 
5q35.3 
6p12 
6p21.3 
6p22.3 
6q22.31 
 
6q22-q23 
6q23.3 
6q25.1 
7p13 
7p15 
7q21 
7q21-q31 
7q31.1 
7q36 
8p12 
8p21 
8p22 

VAV3, GSTM3 
 
 
IFI6 
ATPIF1 
 
S100A1, S100A11 
PEA15 
CRABP2 
COPA 
CACYBP 
 
TP53BP2 
 
ADCK3 
 
IGFBP5, IGFBP2 
LRRFIP1, SNED1 
 
 
 
CP 
GYG1 
SIAH2 
KIT, PDGFRA 
USO1 
 
 
ACSL1 
PIK3R1 
PAM 
REEP5 
 
 
GALNT10 
MSX2 
GNB2L1 
MCM3 
HIST1H1C 
ID4 
ASF1A 
 
FABP7 
CITED2 
ESR1 
BLVRA 
GARS 
FZD1 
SEMA3C 
IFRD1 
PTPRN2 
NRG1 
EPHX2 
ASAH1, TUSC3 
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Continued 

Des 
Mil 
Min 
Chin 

8q21.1 
8q22 
8q22.1 
8q24.1 
8q24.12 
9q33.3 
9q34.1 
9q34.11 
10p15 
10q24 
11p12-p11 
11p15 
11q11-q12 
11q12.3 
11q13 
11q14.1 
12p13 
12q12 
12q13 
12q13.12 
12q14 
12q14.1 
12q24.21 
13q12 
13q21.1-q32 
13q22.2 
13q31.2-q32.3 
13q33 
14q11.2 
15q24 
15q24.2 
15q26.3 
16p12.2 
16p13.3 
16q13 
16q22.1 
16q24.3 
17p11.2 
17q11.2 
17q11.2-q12 
17q11-q12 
17q12 
17q21.2 
17q21.31 
17q24-q25 
18p11.3 
18q21.1 
18q22-q23 
18q23 
19p13.3 
19p13.3-p13.2 
19q13.2 
19q13.3 
19q13.4 
20p11.21 
21q21.1 
22q11.2 
22q13.1 
Xp21.3 

PEX2 
CA2 
LAPTM4B 
SQLE 
TRPS1 
RALGPS1 
CRAT 
SPTAN1 
GATA3 
PDCD4, MYOF, PAPSS2 
EXT2 
RPL27A 
TCN1 
PLA2G16 
NUMA1 
RSF1 
PTMS, SCNN1A 
TWF1 
STAT6, SLC11A2 
FKBP11 
GNS 
PPM1H 
MED13L 
FLT1 
CLN5 
LMO7 
STK24 
EFNB2 
MMP14 
CIB2 
COMMD4 
IGF1R 
POLR3E 
HCFC1R1 
ARL2BP 
CDH1 
PIEZO1 
ALDH3A2, PEMT 
FAM222B, CCL18 
LIG3 
FLOT2 
ERBB2 
KRT17 
ACBD4 
CDC42EP4 
RAB31 
ACAA2 
ZNF236 
CYB5A 
KDM4B 
EPOR 
CYP2A6 
CA11, ARHGAP35 
PEG3 
ENTPD6 
BTG3 
IGL 
POLR2F, H1F0 
ZFX 

 
8q22 
8q22.1 
 
8q24.12 
 
9q34.1 
 
10p15 
10q24 
11p12-p11 
11p15 
11q11-q12 
11q12.3 
11q13 
11q14.1 
12p13 
12q12 
12q13 
12q13.12 
12q14 
12q14.1 
12q24.21 
13q12 
13q21.1-q32 
13q22.2 
 
13q33 
 
 
 
15q26.3 
16p12.2 
16p13.3 
16q13 
 
16q24.3 
17p11.2 
17q11.2 
17q11.2-q12 
17q11-q12 
17q12 
 
 
17q24-q25 
 
18q21.1 
18q22-q23 
18q23 
19p13.3 
 
19q13.2 
19q13.3 
19q13.4 
20p11.21 
21q21.1 
22q11.2 
22q13.1 
 

 
CA2 
LAPTM4B 
 
TRPS1 
 
CRAT 
 
GATA3 
PDCD4, MYOF, PAPSS2 
EXT2 
RPL27A 
TCN1 
PLA2G16 
NUMA1 
RSF1 
PTMS 
TWF1 
STAT6 
FKBP11 
GNS 
PPM1H 
MED13L 
FLT1 
CLN5 
LMO7 
 
EFNB2 
 
 
 
IGF1R 
POLR3E 
HCFC1R1 
ARL2BP 
 
PIEZO1 
ALDH3A2 
FAM222B, CCL18 
LIG3 
FLOT2 
ERBB2 
 
 
CDC42EP4 
 
ACAA2 
ZNF236 
CYB5A 
KDM4B 
 
CYP2A6 
CA11,ARHGAP35 
PEG3 
ENTPD6 
BTG3 
IGL 
POLR2F, H1F0 
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Continued 
Des 
Mil 
Min 
Chin 

Xp22.1 SAT1   
Xq26.3 VGLL1 Xq26.3 VGLL1 

+Loi 

1p13.3 CHI3L2   
1q24-q25 CACYBP 1q24-q25 CACYBP 
2q35 IGFBP5 2q35 IGFBP5 
3p21 3p21   
5q35.2 MSX2   
7p13 BLVRA 7p13 BLVRA 
10q24 PDCD4, MYOF 10q24 PDCD4, MYOF 
  17q11.2 CCL18 
17q24-q25  17q24-q25 CDC42EP4 
19p13.3-p13.2 EPOR 19p13.3-p13.2 EPOR 
21q21.1 BTG3  BTG3 
22q11.2 IGL 21q21.1 IGL 
Xp22.1 SAT1 22q11.2  

 

lists, we applied pathway analysis to the significant DE genes for the original and 
ARCH residuals listed in Table 4. All the identified pathways with Entities FDR 
(<1.0) and associated genes are summarized in Supplementary Table 4. In the 
pathway components shown in Supplementary Table 3, ERBB2 signaling, EGFR, 
cell-cycle, immune system, metabolic pathway, AKT signaling and Wnt path-
way are well- known important breast cancer-signaling pathways [31]. We took 
them to be representative of important pathways and counted the number of 
identified pathways related to these components in the case of the original and 
ARCH residuals. The number and associated gene symbols are summarized in 
Table 5. The representative pathways were mostly covered by the significant 
DE genes for the ARCH residuals. This result supports that the refined gene lists 
obtained by the ARCH residuals generally captured the differentiating breast 
tumors based on ER status and did not overlook any important biological in-
formation by the limited DE gene lists for the ARCH residuals. 

6. Conclusion 

We applied a rank order statistic for an ARCH residual empirical process to re-
fine significant DE genes by two-group comparison in microarray analysis. Our 
approach considered publicly available gene expression datasets and the clinical 
output for ER in addition to the simulation study. We compared the analysis 
performances by the ARCH residuals with the AR residuals and the ordinal 
original microarray data. While the genes for the AR residuals did not cover 
100% of the genes for the original data analysis, the genes by the ARCH residuals 
were mostly 100% overlapped with the original data, and the gene lists were re-
duced about 30% from the gene lists obtained by the original data analysis. We 
confirmed the similar property for the 30% reduction in the simulation study. In 
GO enrichment and pathway analyses, the result by the ARCH residuals was 
mostly covered with associated biological terms obtained by the original data  
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Table 4. Common associated biological processes among Des, Mil, Min, and Chin for 
original and ARCH residuals. 

Associated GO terms 
Des Mil Min Chin 

Orig Arch Orig Arch Orig Arch Orig Arch 

Bi
ol

og
ic

al
 P

ro
ce

ss
 

epithelial cell proliferation + + + + + + + + 

response to estrogen + + + + + + + + 

epidermis development + + +  + + +  

regulation of phosphatidylinositol  
3-kinase activity 

+ + + + +  + + 

erythropoietin-mediated signaling pathway + + +  +  + + 

regulation of lipid kinase activity + + + + + + + + 

phosphatidylinositol 3-kinase signaling + + + + + + + + 

positive regulation of  
phosphatidylinositol 3-kinase activity 

+ + + + + + + + 

phenylpropanoid catabolic process + + + + + + + + 

mast cell differentiation + + + + + + + + 

extracellular vesicle + + +  + + + + 

extracellular vesicular exosome + + +  + + + + 

extracellular region part + + +  + + + + 

 
Table 5. Identified important breast cancer-signaling pathways and associated gene 
symbols obtained from original data and ARCH residuals. 

Pathways 
Original ARCH residuals 

Number Gene symbol Number Gene symbol 

ERBB2 signaling 7 
ERBB2, KIT, 

NRG1 
6 ERBB2 

EGFR pathways 11 
FLT1, KIT, 

PIK3R1, VAV3 
10 

ERBB2, FLT1, 
PIK3R1 

Cell cycle 5 CDH1, MCM3 3 MCM3, NUMA1 

Immune system 5 
CDH1, KIT, 

PIK3R1, STAT6 
5 

ERBB2, IFI6, 
STAT6 

Metabolic disorder 1 SAT1 1 FZD1 

PI3K/AKT signaling 5 KIT, PIK3R1 5 ERBB2, PIK3R1 

Wnt pathway 5 FZD1 5 FZD1 

 
analysis and presented additional important GO terms in biological processes. 
These results suggest that data processing using ARCH residuals array data could 
contribute to refining significant DE genes that follow the required gene signa-
tures and provide prognostic accuracy and guide clinical decisions. 
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