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ABSTRACT. For a class of vector-valued non-Gaussian stationary processes, we de-

velop the Cressie-Read power-divergence (CR) statistic approach which has been

proposed for the i.i.d. case. The CR statistic includes empirical likelihood as a

special case. Therefore, by adopting this CR statistic approach, the theory of es-

timation and testing based on empirical likelihood is greatly extended. We use

an extended Whittle likelihood as score function and derive the asymptotic distri-

bution of the CR statistic. We apply this result to estimation of autocorrelation

and the AR coefficient, and get narrower confidence intervals than those obtained

by existing methods. We also consider the power properties of the test based on

asymptotic theory. Under a sequence of contiguous local alternatives, we give the

asymptotic distribution of the CR statistic. The problem of testing autocorrelation

is discussed and we introduce some interesting properties of the local power.
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1. Introduction

The empirical likelihood method was introduced as a nonparametric method of inference
based on a data-driven likelihood ratio function (Owen, 1988, 1990) in the i.i.d. case. It
is shown that −2 times the logarithm of an empirical likelihood ratio is asymptotically
chi-square distributed, and this is used for constructing confidence regions for parameters
which are specified by an estimating function. Empirical likelihood approaches have been
applied to various statistical models. For example, Zhu & Xue (2006) dealt with an
empirical likelihood-based inference for the parameters in a partially linear single index
model using the bias-corrected empirical likelihood.

Instead of the empirical likelihood ratio, Baggerly (1998) used the Cressie-Read power-
divergence (CR) statistic as a test statistic and showed that it is also asymptotically
chi-square distributed in the i.i.d. case. The CR statistic has user-specified parameter ν ∈
(−∞,∞) and contains the empirical likelihood statistic as a special case (ν = 0). Moreover,
it encompasses several commonly-used tests, i.e., the Neyman-modified χ2-statistic (ν =
−2), the maximum entropy, minimum information or Kullback-Leibler statistic (ν = −1),
the Freeman-Tukey statistic (ν = −1/2) and Pearson’s χ2-statistic (ν = 1). As the
asymptotic result of the CR statistic is established for any given value of ν, the theory of
empirical likelihood is extended dramatically.
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Although the empirical likelihood method has been investigated by many authors, this
research has mostly focused on independent observations. For dependent observations,
Monti (1997) applied Owen’s empirical likelihood approach to scalar linear processes. She
used the derivative of the Whittle likelihood, which is an approximated likelihood function
in frequency domain, as a score function and showed that the empirical likelihood ratio
is asymptotically chi-square distributed. Ogata & Taniguchi (2006) extended Monti’s
approach to the case of non-Gaussian vector stationary processes and provided a rigorous
asymptotic theory for the empirical Whittle likelihood approach. They also applied the
empirical likelihood theory to minimum contrast estimation. Details on minimum contrast
estimation can be found in Taniguchi (1987).

In this paper, we develop Baggerly’s results on the CR statistic for the i.i.d. case
and apply this to time series models, especially, non-Gaussian vector stationary processes.
Specifically, we derive the asymptotic distribution of the CR statistic CRν(θ) based on
the frequency domain estimating function described by an unknown parameter θ. Then it
is shown that CRν(θ) converges to a sum of Gamma distributions for any given value of
ν. Using this result, we can consider interval estimation and testing problems of various
indices in time series analysis.

Specifically, we apply this result to construct confidence intervals of the autocorrelation
ρ(δ), which is a very important and fundamental index in time series analysis. We obtain
confidence intervals of autocorrelation using CRν(θ) with various ν. We also get confidence
intervals of autocorrelation using the asymptotics of sample autocorrelation. We observe
that our CR statistic method gives narrower confidence intervals than the usual sample
autocorrelation method when the model is further away from the unit root process. We can
also see that the asymptotic distribution of the CR statistic does not include the unknown
parameter in the case of scalar processes while that of the usual sample autocorrelation
depends on it. Furthermore, we consider estimating the coefficient of the AR model. We
compare the length of confidence intervals of the AR coefficient using the CR statistic
with the Yule-Walker estimator, which is one of the most important estimators of the AR
coefficient. We get the result that the length of confidence intervals with the CR method is
shorter than those generated by the Yule-Walker estimator. Besides, for potential practical
applications, this CR method can also be applied to prediction problems, interpolation
problems and smoothing problems in finance and econometrics, etc. We refer to Ogata &
Taniguchi (2006, section 3) for details.

A power property of the test based on the CR statistic is also discussed. The asymptotic
distribution under a sequence of contiguous local alternatives is given.

As an example, we consider the problem of testing autocorrelation and investigate its
power property. It is seen that the local power is hardly affected by the non-Gaussianity
of the process, and that the local power becomes larger as the process tends toward the
unit root process.

This paper is organized as follows. In section 2, we summarize existing approaches
to asymptotic theory for empirical likelihood ratio in frequency domain. In section 3, we
propose a more generalized method of the CR statistic for non-Gaussian vector stationary
processes, and give the asymptotic distribution. Section 4 provides power properties of the
test based on the CR statistic. The asymptotic distribution under a sequence of contiguous
local alternatives is derived. In section 5, we give simulations of confidence intervals of
autocorrelation and the AR coefficient. We also give the numerical study on the power of
the test of autocorrelation. The advantages of the CR method are summarized in section
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6.
As for notations used in this paper, we denote the ath component of a vector X by Xa

and denote the (a, b)-component of the matrices A and A−1 by Aab and Aab, respectively.
A∗ denotes the conjugate transpose of a matrix A, and Is represents an s× s unit matrix.
We denote the set of all integers by Z.

2. Setting

Consider a vector-valued linear process {X(t); t ∈ Z} generated by

X(t) =
∞∑

j=0

A(j) U(t− j), t ∈ Z, (1)

where the innovations U(t) are i.i.d. s-vector random variables with probability density
p(u) > 0 on Rs and the A(j) are s by s matrices. The components of X, U and A are all
real. We make the following assumptions.

Assumption1

(i) The coefficient matrices A(j) satisfy

∞∑

j=0

j1/2||A(j)|| < ∞,

where ||A(j)|| denotes the sum of all the absolute values of the entries of A(j).

(ii) The probability density p(·) satisfies

lim
||u||→∞

p(u) = 0,

∫
up(u)du = 0, and

∫
uu′p(u)du = Is,

where ||u|| =
√

u′u and Is denotes the s by s identity matrix.

(iii)
∫ ||u||4p(u) du < ∞.

Remark1 Assumption 1 (i) implies that the dependence between X(t) and X(t+l) becomes
weaker as the time lag l becomes larger. (ii) is the condition for innovation U(t), which
is commonly used in the literature. We need (iii) to control the maximum of important
terms that will appear in the proofs. For example, the non-Gaussian VARMA model with
fourth order moments, which is one of the most typical models in time series, satisfies these
conditions, so assumption 1 is natural.

The process {X(t)} has spectral density matrix which is expressed as

g(ω) = (2π)−1k(ω)k(ω)∗, −π ≤ ω ≤ π,

where k(ω) =
∑∞

j=0 A(j)eiωj . For the observed stretch X(t), t = 1, . . . , T , we denote the
periodogram by IT (ω); namely

IT (ω) = (2πT )−1dT (ω)dT (ω)∗, −π ≤ ω ≤ π.
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where dT (ω) =
∑T

t=1 X(t)e−iωt.
First, for the vector-valued non-Gaussian linear process (1) with the true spectral

density matrix g(ω), we consider to fit a parametric spectral model f„(ω) with θ ∈ Θ ⊂
Rq, to g(ω). Here f„(ω) may be different from g(ω). Consider the multivariate Whittle
likelihood

W (θ) ≡
∫ π

−π

[
log det f„(ω) + tr{f„(ω)−1IT (ω)}] dω.

Here, we impose the following assumption on f„(ω).

Assumption2

(i) Θ is a compact subset of Rq.

(ii) f„(ω) is continuously twice differentiable with respect to θ ∈ Θ.

(iii) f„(ω) ∈ F . Here F is the parametric spectral family whose element is expressed as

f„(ω) =
( ∞∑

j=0

Bj(θ)eijω

)
Σ

( ∞∑

j=0

Bj(θ)eijω

)∗
, (2)

where the Bj(θ) are s × s matrices, B0(θ) is an s × s identity matrix and Σ is an
s× s symmetric matrix.

The model (2) is a spectral form of a general linear process. Suppose that the parameter θ
does not depend on Σ, which corresponds to the covariance matrix of the innovation, and
that the Bj depend on θ. Then we call θ ”innovation-free”. Let θ0 be the value defined
by

∂

∂θ

∫ π

−π

[
log det f„(ω) + tr{f„(ω)−1g(ω)}

]
dω

∣∣∣∣
„=„0

= 0, (3)

which is called the pseudo-true value of θ. If we use

D(f„, g) :=
∫ π

−π

[
log det f„(ω) + tr{f„(ω)−1g(ω)}

]
dω

as a disparity measure between f„(ω) and g(ω), then θ0 means the point minimizing the
D(f„, g) under natural conditions. We know that, if θ is innovation-free, then

∫ π
−π log det f„(ω) dω

is independent of θ (Brockwell & Davis, 1991, p.191; or Priestley, 1981, p.760). Therefore
(3) implies

∂

∂θ

∫ π

−π
tr{f„(ω)−1g(ω)} dω

∣∣∣∣
„=„0

= 0. (4)

Furthermore, this setting is unexpectedly useful for many other situations. By choosing
f„(ω) appropriately, θ can express various important indices of a time series model. We
briefly give the following example of the autocorrelation, which is a very important and
fundamental quantity in time series analysis.
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Example1 (Autocorrelation)Denote by Γ(δ) = Cov[X(t), X(t+ δ)] the autocovariance ma-
trix of X with lag δ. Let us consider the linear process defined in (1), and let

θ = (θ11, . . . , θ1s, . . . . . . , θs1, . . . , θss)′,

A(θ) =




θ11 · · · θ1s
...

. . .
...

θs1 · · · θss


 .

If we set

f„(ω) =
(
Is −A(θ)eiδω

)−1(
Is −A(θ)eiδω

)−1∗
,

then condition (4) implies

s∑

j=1

[θ0]β1j

∫ π

−π
g(ω)jβ2 dω =

∫ π

−π
eiδωg(ω)β2β1 dω (β1, β2 = 1, . . . , s). (5)

From Helglotz’s theorem it is known that

Γ(δ) =
∫ π

−π
eiδωg(ω) dω, (6)

(c.f. Brockwell & Davis, 1991). From (5) and (6), we obtain

A(θ0)Γ(0) = Γ(δ), i.e., A(θ0) = Γ(δ)Γ(0)−1.

Hence, using the Whittle likelihood W (θ), we can discuss an estimator for the quantity
Γ(δ)Γ(0)−1, which is a generalized quantity of the usual autocorrelation ρ(δ) = Γ(δ)/Γ(0)
in the scalar case.

Besides, θ can express other important indices in many other situations such as pre-
diction, interpolation and smoothing problems. For detailed information, see Ogata &
Taniguchi (2006, sections 3 and 4).

3. Cressie-Read power-divergence statistic for time series

In this section, motivated by Baggerly’s (1998) results in the i.i.d. case, we suggest the
CR statistic CRν(θ) for time series,

CRν(θ) = min
w

{
2

ν(ν + 1)

T∑

t=1

{
(Twt)−ν − 1

}
∣∣∣∣∣

T∑

t=1

wtm„(λt) = 0,
T∑

t=1

wt = 1, wt ≥ 0

}
, (7)

where

m„(λt) =
∂

∂θ
tr

{
f„(λt)−1IT (λt)

} ∈ Rq, λt =
2πt

T
(t = 1, . . . , T )

and ν ∈ (−∞,∞). The CR statistic contains the user-specified parameter ν ∈ (−∞,∞)
and encompasses several commonly-used tests, i.e., the Neyman-modified χ2-statistic (ν =
−2), the maximum entropy, minimum information or Kullback-Leibler statistic (ν = −1),
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the Freeman-Tukey statistic (ν = −1/2) and Pearson’s χ2-statistic (ν = 1). Especially,
it includes the empirical likelihood statistic (ν = 0), too. Hence, the CR statistic is
a much broader criterion than the empirical likelihood ratio, and its asymptotic theory
covers the results of Ogata & Taniguchi (2006), which show that −2 times the logarithm
of the empirical likelihood ratio converges to a sum of Gamma distributions under time
series models. Moreover, as numerical simulations show that the Kullback-Leibler statistic
behaves better than the empirical likelihood in some cases (see section 5), this general CR
approach is well worth consideration.

The asymptotics of the CR statistic are given as follows.

Theorem1 Suppose that assumptions 1 and 2 hold. For any given ν ∈ (−∞,∞), as T →∞,

CRν(θ0)
d→ (GN)′(GN), (8)

where N is a standard q-dimensional normal random vector and G = W−1/2V 1/2. Here V
is a q by q matrix whose (l1, l2) element is

Vl1l2 =
1
π

∫ π

−π
tr

[
g(ω) ∂l1f

−1
„0

(ω)g(ω) ∂l2f
−1
„0

(ω)
]

dω

+
1
2π

s∑

u1u2v1v2=1

∫∫ π

−π
∂l1f

u1u2
„0

(ω1)∂l2f
v1v2
„0

(ω2)gX4

u1u2v1v2
(−ω1, ω2,−ω2) dω1dω2,

and W is a q by q matrix whose (l1, l2) element is

Wl1l2 =
1
2π

∫ π

−π
tr

[
g(ω) ∂l1f

−1
„0

(ω)g(ω) ∂l2f
−1
„0

(ω)
]

dω

+
1
2π

∫ π

−π
tr

[
g(ω) ∂l1f

−1
„0

(ω)
]
tr

[
g(ω) ∂l2f

−1
„0

(ω)
]

dω,

where

∂lf
−1
„0

(ω) =
∂

∂θl
f−1
„ (ω)

∣∣∣∣
„=„0

and gX4

···· (·, ·, ·) is the fourth-order spectral density of the process {X(t)}; namely

gX4

u1u2u3u4
(ω1, ω2, ω3) = (2π)−3

∞∑

j1j2j3=−∞
cX4

u1u2u3u4
(j1, j2, j3) exp

{−i(j1ω1 + j2ω2 + j3ω3)
}
,

where

cX4

u1u2u3u4
(j1, j2, j3) = cum

{
Xu1(t), Xu2(t + j1), Xu3(t + j2), Xu4(t + j3)

}
.

The proofs of the theorems appear in the Appendix.

Remark2 Hjort et al. (2008) provide a general investigation on empirical likelihood ratio
estimation, which does not require the assumption of i.i.d. observations. However they
give the asymptotics only for the logarithm of the empirical likelihood ratio, whereas we
focus on the CR statistic. The CR statistic includes the empirical likelihood ratio as a
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special case, so we can compare the various test statistics when constructing confidence
intervals. Moreover, we develop a systematic asymptotics in the frequency domain while
the main stream of Hjort et al. (2008) is for independent samples. By considering the
frequency domain approach, we are able to deal with the estimation of various important
indices in a time series setting, such as autocorrelation (c.f. example 1), prediction error,
interpolation error and so on.

Remark3 Denote the eigenvalues of G′G by a1, . . . , aq. Then we can write the right hand
side of (8) as

(GN)′(GN) =
q∑

i=1

γi, (9)

where γi is distributed as Gamma(2−1, (2ai)−1).

V and W contain the unknown spectral density matrix g(ω) and the fourth-order spectral
density gX4

u1u2u3u4
(−ω1, ω2,−ω2). In practice, we can make appropriate consistent estima-

tors V̂ and Ŵ of V and W , respectively by use of methods in Taniguchi (1982) and Keenan
(1987). Then, from the Slutsky theorem it follows that

(ĜN)′(ĜN) d→ (GN)′(GN) =
q∑

i=1

γi, (10)

where Ĝ = Ŵ−1/2V̂ 1/2. Using theorem 1, we can construct confidence regions for θ. First,
we choose a proper threshold value zα, which is the α-percentile corresponding to the
approximation to (9) based on the relation (10). Then we calculate CRν(θ) at numerous
points over Θ and construct the region

Cα,T (θ) = {θ | CRν(θ) < zα}. (11)

Remark4 When the process (1) is scalar, V and W in the theorem are identical. Then
we can see that G = Iq and the asymptotic distribution in (8) becomes the chi-square
distribution with q degrees of freedom.

4. Power property

In this section, we consider a power property of the test based on theorem 1. From now
on, let the coefficient matrices A(j) of (1) be parameterized by θ ∈ Θ ⊂ Rq. Write

A„(z) =
∞∑

j=0

A„(j) zj , |z| < 1.

In this section, we need the local asymptotic normality for a stochastic process, which is
seen in Taniguchi & Kakizawa (2000, section 2.2). We thus make the following assumptions
(c.f. Taniguchi & Kakizawa, 2000, p.37).

Assumption3

7



(i) (a) Every A„(j) is continuously two times differentiable with respect to θ, and the
derivatives satisfy

|∂u1∂u2 . . . ∂uk
A„,l1l2(j)| = O{j−1+ε(log j)k}, k = 0, 1, 2

for l1, l2 = 1, . . . , s and for some ε (0 < ε < 1/2).
(b) det A„(z) 6= 0 for |z| < 1 and A−1

„ (z) can be expanded as follows:

A−1
„ (z) = Is + B„(1)z + B„(2)z2 + · · · .

(c) Every B„(j) is continuously two times differentiable with respect to θ, and the
derivatives satisfy

|∂u1∂u2 . . . ∂uk
B„,l1l2(j)| = O{j−1−ε(log j)k}, k = 0, 1, 2

for l1, l2 = 1, . . . , s.

(ii) The continuous derivative Dp of p(·) exists on Rs.

(iii)
∫ ||κ(u)||4p(u)du < ∞, where κ(u) = p−1(u)Dp(u).

Remark5 The conditions stated in assumption 3 are not restrictive. The typical models in
time series analysis such as the VAR, VMA and VARMA models satisfy these conditions.
Besides the more complicated FARIMA model with long range dependence satisfies them.
Therefore we can say that assumption 3 is natural.

Consider the problem of testing

H : θ = θ0 against A : θ 6= θ0.

To see the goodness of our test we evaluate the local power under the sequence of lo-
cal alternatives AT : θT = θ0 + T−1/2h, where h = (h1, . . . , hq)′. Define c»X(j) =
cum{κ(

U(t)
)
, X(t + j)′}. Then the cross-spectral density matrix g»X(ω) is given by the

following relation,

c»X(j) =
∫ π

−π
eijωg»X(ω) dω.

Then we get the following theorem.

Theorem2 Let G, V , W and N be the same matrices and q-dimensional standard normal
vector as defined in theorem 1. Under the sequence of local alternatives AT , for any given
ν ∈ (−∞,∞),

CRν(θ0)
d→ (GN + µ)′(GN + µ),

where µ = 2W−1/2τ . Here τ = (τ1, . . . , τq)′ with

τi =
∫ π

−π
tr

[
g(ω) ∂if

−1
„0

(ω) g»X(ω)
{ ∞∑

j=1

Bh′∂„0
(j)eiωj

}]
dω

and

Bh′∂„0
(j) =

q∑

l=1

hl
∂B„0(j)

∂θl
.
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The difference with theorem 1 is that we are considering the asymptotic distribution of
the test statistic under a sequence of ”contiguous alternatives AT ”, and that its normed
factorization GN+µ has mean µ. This µ means deviation from the asymptotic distribution
under the null hypothesis, so the magnitude of |µ| indicates the magnitude of the power
of the test. For simplicity, let us consider the scalar case. The limiting power of the test
with significance level α is expressed as

P (µ) = 1− Pr
{
(GN + µ)2 < zα

}
= 1− Pr

{−√zα < GN + µ <
√

zα

}
= 1−Q(µ) (say),

where zα is the α-percentile of the limiting distribution under the null hypothesis. Obvi-
ously, Q(µ) attains its maximum when µ = 0, and larger |µ| gives smaller Q(µ). Therefore,
the power P (µ) becomes larger when the magnitude of |µ| is larger.

5. Numerical example

In this section, we give numerical simulations for theorems 1 and 2. Let us consider the
following scalar-valued AR(1) model,

X(t) = bX(t− 1) + U(t), (12)

where |b| < 1, and the U(t) are independent and identically distributed, where the distri-
bution of U(t) satisfies (ii) and (iii) of assumption 1.

As an example of theorem 1, we discuss the estimation of the quantity θ0 = ρ(δ), the
autocorrelation with lag δ. As is seen in example 1, we set fθ(ω) = |1 − θeiδω|−2 and
calculate CRν(θ) at numerous point over (−1, 1). Since the process (12) is scalar, the
asymptotic distribution of CRν(θ0) is chi-square with 1 degree of freedom, χ2

1 (see remark
4). Then we construct the interval Cα,T (θ) in (11) where zα is the α-percentile of χ2

1 and
get the α percent confidence interval of θ0 = ρ(δ).

The autocorrelation ρ(δ) can also be estimated by using the sample autocorrelation
ρ̂(δ) = γ̂(δ)/γ̂(0), where γ̂(δ) = T−1

∑T−|δ|
t=1

(
X(t) − X̄T

)(
X(t + δ) − X̄T

)
with X̄T =

T−1
∑T

t=1 X(t). It is known (e.g., Brockwell & Davis, 1991, theorem 7.2.1) that the quan-
tity

√
T

(
ρ̂(δ)− ρ(δ)

)
is asymptotically normally distributed with mean zero and variance

∞∑

k=−∞

{
ρ(k + δ)2 + ρ(k − δ)ρ(k + δ) + 2ρ(δ)2ρ(k)2 − 4ρ(δ)ρ(k)ρ(k + δ)

}
. (13)

Then we can also get the confidence interval of θ0 = ρ(δ) with sample autocorrelation. But
the asymptotic variance (13) includes the unknown parameter ρ. Therefore, we recommend
the CR method rather than the sample autocorrelation method when the process is scalar.

The results of our simulations are as follows. Let the innovation U(t) have t-distribution
with 5 degrees of freedom and generate X(1), . . . , X(200) from (12), i.e. T = 200. Then we
estimate the autocorrelation with lag δ = 2. In the AR(1) model (12), the autocorrelation
ρ(δ) is b|δ|, hence θ0 = b2. Table 1 shows 90% confidence intervals of θ0 by use of the
CR method (ν = −2,−1,−1/2, 0, 1, 2) and the sample autocorrelation (SAC) method for
b = 0.1, 0.5, and 0.9. The upper line in each cell shows the 90% confidence interval and
the lower line shows the length of the interval. Except for a few cases, the length of the
interval obtained by using the CR method is shorter than that corresponding interval using
sample autocorrelation. Alhough the case of ν = 0 (empirical likelihood statistic) shows
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the best performance when b = 0.1 and b = 0.5, the case of ν = 1 (Peason’s χ2-statistic)
is best when b = 0.9. Therefore it is also worth considering the general CR approach not
only the empirical likelihood method.

Table 1 here

Moreover, we investigate the case b = 0.9 with small sample sizes (T = 50, 100) for
various ν (ν = −2, 0, 1, 2, 3, 4) and SAC. Table 2 shows the resulting 90% confidence
intervals of ρ(2) for the model X(t) = 0.9X(t− 1) + U(t) where the innovations U(t) have
t-distributions with 5 degrees of freedom. The true value of ρ(2) is 0.81. The upper line
in each cell shows the 90% confidence interval and the lower line shows the length of the
interval. The cases (ν, T ) = (2, 100), (4, 50), (4, 100) give better results than using sample
autocorrelation, but we cannot consistently say that the CR method is better than the
sample autocorrelation method.

Table 2 here

We then investigate the estimation problem of the AR coefficient. Consider again the
AR(1) model (12) whose innovations U(t) are independent and have t-distribution with 5
degrees of freedom. Suppose that we want to estimate the AR(1) coefficient b. If we set
fθ(ω) = (2π)−1|1− θeiω|−2, which is the spectral density function of the model (12), then
the θ0 which satisfies condition (4) becomes the coefficient b. Therefore we can construct
confidence intervals of the coefficient b with the CR method.

The Yule-Walker estimator θ̂Y W is another existing estimator of the AR coefficient. It
is a quasi-MLE and it is known that the quantity

√
T

(
θ̂Y W−θ0

)
is asymptotically normally

distributed with mean zero and variance

4π

{∫ π

−π

1
fθ(ω)2

(
∂fθ(ω)

∂θ

)2

dω

}−1

. (14)

From this we can derive confidence intervals of θ0 = b by the Yule-Walker estimator.
We compare the length of confidence intervals obtained using the CR method with

those obtained from the Yule-Walker estimator. Table 3 shows 90% confidence intervals
when b = 0.4 using both the CR method (ν = −1,−1/2, 0, 1, 2, 3) and the Yule-Walker
method (Y-W), with sample size T = 200. In all cases, the CR method is superior to the
method by the Yule-Walker estimator. We also compared the 90% confidence intervals
when b = 0.1, T = 200 and b = 0.1, T = 50 (results not displayed). Similarly, the CR
method turned out as superior to the Yule-Walker estimator.

Table 3 here

From the results of various simulations on confidence intervals, we can say that the CR
method is better than the existing methods when the process is away from the unit root
process.

Next, as an example of theorem 2, we discuss the power property of the test

H : ρ(δ) = θ0 versus A : ρ(δ) 6= θ0.

We evaluate the local power under the sequence of local alternatives AT : ρ(δ) = θ0 +
T−1/2h, h ∈ R. From theorem 2, we can see that the mean difference |µ| indicates the
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magnitude of the power. When we consider the AR(1) model (12), the magnitude |µ| is
expressed as

|µ| = (2π)−1/2 |Mph| K(b, δ),

where Mp :=
∫∞
−∞ uDp(u) du and K(b, δ) is a positive function of b and δ. Therefore we

can see that the larger |h|, |Mp| and K(b, δ), the larger is the power.
If the innovation U(t) has the standard normal distribution, we can easily check that

|Mp| = 1. To see the effect of non-Gaussianity, we consider the generalized exponential
distribution GE(η), whose density is expressed as

p(u) = c exp
{−|u|η/2ζ

}
,

where η > 0, ζ = 2−1/ηΓ(1/η)1/2Γ(3/η)−1/2 and c = ηζ−12−(1+η)/ηΓ(1/η)−1. GE(2)
coincides with the standard normal distribution and GE(η), η < 2, is a more heavy-tailed
distribution than normal. Therefore, we study the behavior of |Mp| when η < 2 to check
the effect of non-Gaussianity. Except for the region close to 0, the magnitude of |Mp| is
approximately 1 so we can see that the effect of non-Gaussianity is very small.

Figure 1 here

Finally, we consider the magnitude of K(b, δ). Figure 2 shows the relation between
K(b, δ) and b with δ = 2, 3 and 4, respectively. In every case, the magnitude of K(b, δ)
increases when the value of b tends to 1. Therefore, the test based on the CR method
works well for the near unit root process.

Figure 2 here

6. Conclusion

This paper introduces a CR method for time series models, especially vector-valued non-
Gaussian stationary processes. The asymptotic distribution of the CR statistic under
the null hypothesis is derived. It is shown that we can construct confidence intervals for
quantities of interest. As examples, we consider estimation of the autocorrelation and
AR(1) coefficient. From the simulation results, we can see that the CR method works
better than existing methods such as sample autocorrelation and the Yule-Walker method
in the sense of length of confidence intervals. Especially, when the process is distant from
the unit root or the sample size is very small, the CR method shows good performance.
We also give the asymptotic distribution of the CR statistic under sequences of local
alternatives, and we carry out numerical studies about the power property of the test of
the autocorrelation. We conclude that the power is hardly affected by the non-Gaussianity
of the innovation process, and is larger near the unit root process. It should be noted
that if we choose the score function f„ appropriately, the quantity θ0 can express various
important indices in time series, and hence our approach can be applied to many problems,
such as prediction problems, interpolation problems and smoothing problems.
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Table 1: 90 % confidence intervals (and their length) for the autocorrelation θ0 = ρ(2), by
use of the CR method (varying ν) and the sample autocorrelation (SAC) method. The
model is X(t) = bX(t − 1) + U(t), where U(t) is t-distributed with 5 degrees of freedom.
Sample size is 200.

b = 0.1, θ0 = 0.01 b = 0.5, θ0 = 0.25 b = 0.9, θ0 = 0.81
(-0.075, 0.144) (0.135, 0.389) (0.689, 0.862)

ν = −2
0.219 0.254 0.173

(-0.074, 0.144) (0.143, 0.392) (0.710, 0.867)
ν = −1

0.218 0.249 0.157
(-0.074, 0.144) (0.146, 0.394) (0.715, 0.867)

ν = −1/2
0.217 0.248 0.152

(-0.073, 0.144) (0.149, 0.396) (0.721, 0.869)
ν = 0

0.217 0.247 0.148
(-0.074, 0.146) (0.152, 0.402) (0.729, 0.875)

ν = 1
0.220 0.250 0.146

(-0.076, 0.149) (0.153, 0.411) (0.735, 0.881)
ν = 2

0.225 0.257 0.147
(-0.083, 0.155) (0.122, 0.427) (0.733, 0.884)

SAC
0.237 0.305 0.152
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Table 2: 90 % confidence intervals (and their length) for the autocorrelation ρ(2) = 0.81,
by use of the CR method (varying ν) and the sample autocorrelation (SAC) method. The
model is X(t) = 0.9X(t− 1)+U(t), where U(t) is t-distributed with 5 degrees of freedom.
The case of small sample sizes: T = 50, 100

T = 50 T = 100
(-4.437, 0.831) (-0.092, 0.843)

ν = −2
5.268 0.935

(0.474, 0.845) (0.613, 0.853)
ν = 0

0.371 0.240
(0.522, 0.855) (0.631, 0.861)

ν = 1
0.333 0.229

(0.545, 0.864) (0.692, 0.822)
ν = 2

0.319 0.129
(0.558, 0.872) (0.648, 0.876)

ν = 3
0.315 0.228

(0.604, 0.844) (0.678, 0.853)
ν = 4

0.240 0.175
(0.575, 0.878) (0.665, 0.879)

SAC
0.303 0.214

Table 3: 90% confidence intervals (and their length) for the AR(1) coefficient b, by use of
the CR method (varying ν) and the Yule-Walker (Y-W) method. The model is X(t) =
bX(t− 1) + U(t), where U(t) is t-distributed with 5 degrees of freedom.

b = 0.4, T = 200 b = 0.1, T = 200 b = 0.1, T = 50
(0.161, 0.553) (0.00724, 0.223) (-0.493, 0.472)

ν = −1
0.393 0.216 0.965

(0.295, 0.496) (0.00777, 0.224) (-0.147, 0.278)
ν = −1/2

0.202 0.216 0.425
(0.296, 0.498) (0.00800, 0.224) (-0.147, 0.279)

ν = 0
0.202 0.216 0.426

(0.298, 0.503) (0.00753, 0.227) (-0.152, 0.286)
ν = 1

0.205 0.219 0.438
(0.298, 0.509) (0.00551, 0.231) (-0.0521, 0.188)

ν = 2
0.212 0.225 0.240

(0.296, 0.518) (0.00151, 0.237) (-0.175, 0.309)
ν = 3

0.222 0.236 0.484
(0.093, 0.709) (-0.245, 0.479) (-0.635, 0.795)

Y-W
0.616 0.724 1.45
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Figure 1: The relation between |Mp| and η is shown. The model is X(t) = bX(t−1)+U(t),
where U(t) has a generalized exponential distribution with density p(u) = c exp

{−|u|η/2ζ
}
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Figure 2: The relation between K(b, δ) and b is shown for the cases δ = 2, 3 and 4.
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