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Statistically Efficient Construction

of a-risk Minimizing Portfolio

Hiroyuki TANIAI ( Waseda University)

Symposium: Statistics for Biomedical & Social Mathematical Sciences
March 2012, Waseda

In this talk, we consider the problem that minimize a quantity known as a-risk by re-
allocate the weight of several financial assets. Particularly, we remark that we can improve
the statistical efficincy of minimizing procedure by regarding it from an semiparametric vies
point. The summary is as follows.

To begin with, the “a-risk” here we concern is those which defined by

ou (X) = — X /0 “Fodu  (FS(a) = inf{z: Fx(2) > a}).

«

We consider a portfolio wich consists of p financial assets with allocation weight
m = (m,...,mp) ", and seek to minimize its a-risk g, (X "w). Bassett et al. (2004)
already has showed that this optimization problem can be solved by means of Quantile Re-
gression (QR) of Koenker and Bassett (1978). However, this QR estimator is not necessarily
efficient: It can be point out that QR estimator can be regarded as a QMLE based on
Asymmetric Laplace distribution: a(l — «)exp{pa(£)} (cf. Komunjer (2005)).

Here in this talk, we focus on the fact that QR is a prametrization which is essentially
semi-parametric. That is, recalling that a QR model is such that Fy, _, (o) = w, B(a)
with conditional quantile function Fy g(a) := inf{z : P(X < z|S) > a}, such a model is a
submodel of (e.g.,) the following class of quantile restricted models:

Zi =W, b+¢, &%¥a, (1)

st. ge FY = {f‘/_ooof(x)da::a:1—/Ooof(a:)da:}.

Although these parematrization is not unique with respect to the given QR model, still if
this parametrization, the model, is known to satisfy the Local Asymptotic Normality (LAN)
then we may consider the semiparametrically efficient inference based on it. To this end, we
apply the invariance approach of Hallin and Werker (2003). Namely, by referring Section 4.1
of Hallin et al. (2008), we construct the “one-step estimator” as

AN S—1 by, f S aln) a  f0) . % (n) g (m) T
bf '_b"+297’ Efg'_IfgSW—i_l_a‘_ia‘uLpg’LW w ,



where b,, corresponds, in this case, to the discretization of QR estimator B(”)(a) =
argming > po(Z; — W, b).

Consequently we provide several simulation results, which highlight the efficiency gain from
,B(”)(oz) to IN)EZL). Among these, here in this report we give Table 1 and Figure 1 below. The
data are generated as the same situation as that of Bassett et al. (2004), so the true density
g of (1) must be a mixture of Gaussian, x? and Reversed x? distribution. As shown in Table
1, we successfully improve the estimation errors. Still, you may think that Figure 1 is not
as significant as Table 1 says: If we examine the result more deeply, we may find that those
efficiency gain are obtained by trimming the behavior of the resulting mixture density at
outliers.

f () || mi(1)  ma(l)  ws(l)  ma(l) | m(B)  me(.B)  ws(.B)  ma(.5)
n = 1000
AL || 0.8702 0.9084 0.5621 0.8193 | 0.9150 0.8985 0.2225 0.3614

N || 0.9416 0.9485 0.8680 0.9112 | 0.7850 0.7714 0.4019 0.5214

LGT | 0.9453 0.9532 0.8640 0.9085 | 0.8101 0.7981 0.4043 0.5199
APD;5 || 0.9290 0.9296 0.9242 0.9645 | 0.8206 0.8077 0.3572 0.4806

Table. 1 Var[i)gc")]/\/ar[,@(”)(a)] for situation of Bassett et al. (2004)
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Fig. 1 Behavior of 3™ (o) and B;"), DGP = Bassett et al. (2004), n = 1000 , o = 0.1
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Semiparametric penalized spline regression
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Statistical Estimation for CAPM with Long-Memory Dependence.

Tomoyuki Amano (Wakayama Univ.)
Tsuyoshi Kato
Masanobu Taniguchi (Waseda Univ.)

Black version of CAPM expected return is given by F [R;] = ®im + BimE [Rm], where oy, =
E [Rom (1 - Bim)].

However this model does not have a time dimension. For econometric analysis of the model, it
is necessary to add an assumption concerning the time series behavior of returns and estimate
the model over time.

In what follows, we discuss statistical estimation for Black version of CAPM.

Suppose that an n-dimensional financial return process {Y; = (Y14, ..., Yy, )’} is generated by
Yi=a+B'Z, +e, (1)

where o = (v, ...,a,) and B = {B;5;i =1,...,p,j = 1,...,n}, (n < p), are unknown vector and
matrix, respectively, {Z,,; = (Z14, ..., Zp+)'} is an explanatory stochastic regressor process and
{et = (e1,t, -, €n,t)'} 1s & sequence of disturbance process.

In view of empirical analysis for financial data, it is natural to assume that {Y;} is short-memory,
and {Z,,:} is long-memory.

For this we suppose that {Z,,:} and {€;} are defined by

o0 o0
Zoi =Y Vi@ + Y pibij,
i=0 i=0

oo oo
€ = Z"ljetfj + Zﬁjbtﬂw
=0 =0

where {a:}, {b:} and {e:} are p-dimensional zero-mean uncorrelated processes, and they are
mutually independent. Here the coefficients {v;} nad {p;} are p x p-matrices, and all components
of 7; are ¢!-summable, (for short, v; € ¢!), and those of p; are £2-summable (for short, p; € £2).
The coefficients {n;} and {¢;} are n x p-matrices, and n; € ¢! and &; € (2.

Proposition 1.

If Bp;+& =0(j"“), a>1, then the process {Y;} is short-memory dependent.

Proposition 1 provides an important view for the CAPM, i.e., if we assume natural conditions
on (1) based on the empirical studies, then they impose a sort of ”curved structure”, i.e.,
B'p;j+&=00"").

Two-Stage Least Square Estimation

To estimate B in our setting, we introduce an instrument variable {X;}. {X;} is (r x 1)-vector
(p < r) and satisfies the condition Cov(Xy, Z,t) # 0 and Cov (X4, €) = 0. We consider the

regression which is given by Z,,; = 6’ X; + uy.



Our 2SLS estimator BQSLS is defined by

T
Z ZAth:nt

t=1

Bysrs =

T
zzmw] ,
t=1

where Z,,; = 6’ X; and & is the OLS of Z,,; on X;.

To elucidate the asymptotics, we assume that the joint vector (€}, X;)’ is generated by

( ; ) =Y GUT(t—j) = A; (say),
t =0

where {T'(t) = (I',...,I4)'} is an uncorrelated (n + r)-vector process with

Er@®)])=0
ELT(s)"] =6(t,s)K
and G(j)’s are (n +7) x (n + r) matrices which satisfy 377 tr {G(j) KG(j)*} < co. Denote
the spectral density matrix of {A;} by f(w).
Here the process (€}, X)’ is possibly long-memory. For this type of linear processes, Hosoya(1997)

developed the asymptotic theory for the Whittle estimator. Using his result, we can derive the
asymptotic distribution of §2g Ls as follows.

Theorem

Under appropriate regularity conditions, it holds that

p—lim BQSLS = B.

VT (Basis — B) % Q7B [Z,uX{| EIX. X)) ' U
where
Q = [E(Zm X)) [E(X. X)) " [E(X:Z,,)]

and U = {U; ;;1 <i<r,1<j<n}is arandom matrix whose elements follow the maltivariate

normal distribution with mean 0 and

Cov[U; ;,Ur ] = 27T/ [frtimntk (@) f1.0(w) 4+ frtin (@) finsr(w)]dw

—1Tr
n+r ™ T
+om Y / / Fonti, g (W1) 5,8, (—w1)
- J -7

B, ,fa=1

X Kk, s (W2) K1, p, (—w2) Qb .. 5, (W1, —w2, wa)dw dws.



Statistical Estimation of Multiperiod Optimal Portfolios

Hiroshi Shiraishi Jikei Medical University

The original literature on dynamic portfolio choice, pioneered by Merton (1969) in continuous time and by
Samuelson (1969) and Fama (1970) in discrete time, produced many important insights into the properties of
optimal portfolio policies. Unfortunately, since it is known that the closed-form solutions are obtained only
for a few special cases, the recent literature uses a variety of numerical and approximate solution methods to
incorporate realistic features into the dynamic portfolio problem such as Ait-Sahalia and Brandt (2001) and
Brandt et al. (2005).

We introduce an procedure to construct the dynamic portfolio weights based on AR bootstrap. Bose (1988)
showed that the distribution of least-squares estimators in autoregressions can be resampled with accuracy
o(n~?) as..

Suppose the existence of a finite number of risky assets indexed by ¢, (i = 1,...,m). Let X; = (X1(¢),..., X;n(t))
denote the random excess returns on m assets from time ¢ to t + 1. Suppose too that there exists a risk-free
asset with the excess return X;. Based on the process {X;}7_; and X, we consider an investment strategy
from time 0 to time T" where T'(€ Z) denotes the end of the investment time. Let w; = (w1 (t), ..., wn(t))" be
vectors of portfolio weight for the risky assets at the beginning of time ¢+ 1. Here we assume that the portfolio
weights w; can be rebalanced at the beginning of time ¢ + 1 and measurable (predictable) with respect to the
past information F;. Then the return of the portfolio from time ¢ to t+1 is written as 1+ X +w; (X1 — Xye)
and the return from time 0 to time T (called terminal wealth) is written as

T-1
Wr =[] (1 + Xy + w)(Xis1 — Xye)). (0.1)
t=0

Suppose that a utility function U : x — U(z) is differentiable, concave and strictly increasing for each z € R.
Consider an investor’s problem

max E[UWrp)].

T-1
{we} o

Following a formulation by the dynamic programming (e.g.,Bellman (2010)), it is convenient to express the ex-

pected terminal wealth in terms of a value function V; which varies according to 7 = o(X7, ..., X¢, wo, ..., W—1):
Vi = max E[UWrp)|F] =maxE | max E[UWrp)|Fp1]|Fe| = max E [Vip1|Fi (0.2)
{ws}z;l we {wS}Z;tarl we

subject to the terminal condition Vi = U(Wr). The recursive equation (0.2) is the so-called Bellman equation
and is the basis for any recursive solution of the dynamic portfolio choice problem.  According to the literature
(e.g,Brandt et al. (2005)), we can simplify this problem in case of a constant relative risk aversion (CRRA)
utility function, that is,

1—y

1—7"

Uw) = v #1 (0.3)

where v denotes the coeflicient of relative risk aversion. In this case, the Bellman equation simplifies to

‘/t = U(Wt)\I/t, \I’t = H%UaXE [(1 + Xf + wé(Xt+1 - Xfe))l_fy\lfprﬂ]:t}

subject to the terminal condition ¥ = 1.
Suppose that {X; = (X1(t),..., X (t));t € Z} is an m-vector AR(1) process defined by

Xt =M + A(Xt—l - /,l,) + € (04)

where g = (p1,...,m) is a constant m dimensional vector, €, = (e1(t),...,en,(t)) are independent and
identically distributed (i.i.d.) random m dimensional vectors with Fe; = 0 and Fe;e; =T (T is a nonsingular
m by m matrix), and A is a nonsingular m by m matrix. We construct an estimator of the optimal portfolio
weight as follows;



Stepl: First, we fix the current time ¢ which implies that the observed stretch n + t is fixed. Then, we can

generate {Xﬁbl’b%t)* I, 1 which is a bootstrapped sample based on {X }{__ ;.
Step2: Next, for each by = 1,..., B, we obtain 'ng’ﬂ’lt) as the maximizer of

B
S+ Xy w (X0 Xpe))! T (05)
b=1

* _ 1
iy [+ Xy w (X0 xpe)) ] = L

This ﬁ:g’ﬂ’f) corresponds to the estimator of myopic (single period) optimal portfolio weight.

Step3: Next, we construct estimators of W _;. Since it is difficult to express the explicit form of ¥r_, we
parameterize it as linear functions of X _; as follows;

\Il(l)(XT,l,BT,l) = [1,X%71]0T71 (06)
(X 1,07 1) =1, X}, vech(Xp_1 X 1) ]07 1. (0.7)

Note that the dimensions of @7_; in ¥ and U@ are m + 1 and m(m+1)/2+m+ 1, respectively. The
idea of ¥ and ¥ is inspired by the parameterization of the conditional expectations in Brandt et al.
(2005).

In order to construct the estimators of \Il(i)(z' = 1,2), we introduce the conditional least squares
estimators of the parameter 0;11, that is,

ééfll = argmein lel(e), Q¥)71(0) =FEp_q |(Yr—1 — ‘I’(i))ﬂ .

Then, by using é(Till, we can compute (%) (Xq(qbﬂ’lb’t)*, égll)

Step4: Based on the above ¥, we obtain uﬁgjﬂ’;) as the maxmizer of

By [(L4+ Xp +w/ (X007 = Xpe)) e (xf0", 040 )| (0.8)

This wg'ﬂ’;) does not correspond to the estimator of myopic (single period) optimal portfolio weight due

to the effect of W),

Steph: In the same manner of Step3-4, we can obtain égl) and wg”““, recursively, for s =T -2, T —1,...,t+ 1.

Step6: Then, we define an optimal portfolio weight estimator at time ¢ as 'Li)ﬁt) = wt(b"’t) by Step4. Note that
w!" is obtained as only one solution because Xt(iol’b’t)*(z a0+ AW (X, — p®) + egi?*) is independent

of bo.

Step7: For each time t = 0,1,...,7 — 1, we obtain uAJ,gt) by Stepl-6. Finally, we can construct an optimal

investment strategy as {'th(t) tT:_Ol.
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When does seasonality exist? A Synchrosqueezing approach to determining the

seasonality.

Ming-Yen Cheng (National Taiwan University)

Abstract:

Seasonality exists in a given observed signal if the signal expresses repeated
patterns regularly as time proceeds. Identifying seasonality is an important issue in
many scientific fields. In general, if seasonality is observed or suspected, ARIMA model,
frequency analysis (FFT) and seasonal index are applied to analyze, confirm and predict
its effect. Besides their success in understanding many important information, such
methods are limited to either model simplification or a priori model selection. In
particular, the simplified assumptions might mask the nonlinearity or nonstationarity
nature of the underlying system. Consequently, these approaches are not always
feasible to analyze the real world data. For example, when we want to understand finer
local information in the data, such as the effect of an unexpected disease breakout or the
effect of a policy change, it seems difficult for the traditional methods to achieve this
aim. It turns out that establishing an adaptive method, that is, one without any
assumption on the model, is beneficial in this field. Upper respiratory tract infection
(URD) is an illness caused by an acute infection involving the upper respiratory tract.
From the viewpoint of public health, it has the feature referred to as the seasonality,
that is, the prevalence oscillates according to the seasonal change i the prevalence is
higher in the winter and lower in the summer. This phenomena has been studied and
well understood. The purpose of this study is to introduce an adaptive method, referred
to as the Synchrosqueezing transform, to extract information from a given time varying
signal so that the extracted information may be used as the initial guess of the model
selection problem. Since the existence of the seasonality phenomena in the URI disease
1s commonly accepted, and policy changes and ages play roles in this disease, we focus
on analyzing this disease and demonstrate how this method extracts the hidden
information. In the end, we apply the extracted information to build up a new ARIMA
model to understand statistically the URI dataset. This talk is based on a joint work
with Jzeng-Ji Chen, Yu-Chun Chen, and Hau-Tieng Wu.
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Abstract

This paper proposes a simple test that is based on certain time domain properties of I(d)
processes. If a time series follows an I(d) process, then its dth differenced series follows an
I(0) process. Simple as it may sound, its properties provides useful tools to distinguish the
true and spurious I(d) processes. We estimate d, use the estimate to take the d th difference
of the sample, and apply the KPSS test to the differenced data and its partial sum. The
KPSS test is applicable to both stationary and nonstationary I(d) processes. The spurious
long memory processes are essentially I(0) or I(1) in their nature, and taking their dth
difference magnifies their non-I(d) properties. We derive its limiting distribution and show
that the test is consistent. The limiting distribution of these test statistics depends on d,
and its simulated critical values are provided. Simulations show that the proposed tests have
good power against the spurious long memory models considered in the literature.

JEL Classification Number: C12, C13, C14, C22
Keywords: long memory; fractional integration; structural breaks.
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The optimal portfolio problem with the ideal
balance and exogenous variable causality

Kiyoaki Sasaki and Junichi Hirukawa*
Niigata University

abstract

The pension fund collect the premiums from the people and invest them. The
premium reserve is a minimum asset which should be reserved in the investment.
On the other hand the portfolio is a linear combination of the prices of assets,
which are multiplied by allocations. In this paper, we assume that the premium
reserve and portfolio are described by Fackler’s recurrence formula. The cash
flow of total of premium and sum insured can be decomposed into two part,
namely, that of the premium reserve and that of portfolio. Our object is the
ideal balance of premium reserve, which is given by the pension investment
policy and expressed by the ideal curve function. We give the optimal portfolio
which solve this recursive utility optimization problem. Finally, we consider the
additional restriction of the causality from exogenous variable.

Let us assume that a total of premium at year ¢ is C; and sum insured is
R;. The cash flow constraint at year ¢ is
CFt - Rt - Ct,

which is cash flow total of premium and sum insured. Portfolio have price p; and
the allocation vector is given by «a; at year t. We assume that i is interest rate,
r¢ is return rate of portfolio, V; is premium reserve and A is total of portfolio
price. From Fackler’s recurrence formula we have

Vigr = Vi (1414) + CF} <1+%>,

T
Apyr = A (14 1,) + CF? (1 + Et) )

The cash flow constraint is
CF,=CF} + CF}.
Solving Fackler’s recurrence formula with respect to V;:

t—1 .
. wi—1— )
Vt:Vg(l-{-’L)t-l-kE_O(l-l-’L)t =k oR} <1+§>.



Since A; is total of portfolio price, CF? is represented by p; and ay:

2 _ 20t (042+1 - Oéi)Pt+1
CF; = p
ot (Pt + Peg1)

We consider model of p; whether it contains exogenous variable or not.

e If p; does not contain the exogenous variable, p; is expressed by simple
VAR model:
pt = Bpi—1 + w,

where the error term w; is weak white noise and A is an n X n matrix.
o If p; contains the exogenous variable, we assume S; is exogenous and

Cpt = Dpi_1 + FpSe + Fi1Si—1 +wy,
St = HSt_1 + v

Therefore,

o _ C—'D 071F1 + CilFoH Pi—1 + c1 (Ut + Fo’l}t)
St - 0 H St,1 Ve

This optimization problems are solved with minimizing the distance between
the premium reserve and the objective function in terms of the loss function.
Let us assume objective function I, is the ideal balance function. This function
is the ideal balance curve of overall future pension given by pension investment
policy. The minimization problem is

min By | > 69U (L — Vi) |
o iz
subject to : CF; = CF} + CF?,

where § , 0 < § < 1 is subjective discount factor and the loss function U is
increasing and convex. Let us denote

_ OCF? _OCRL, OV,
qi,t = —8at y Qet—1 = 780@ s bt4j = —Bat .

The solution of this problem can be obtained by differentiating with respect
to the portfolio allocations. We can find the first-order condition called Euler
condition:

[ee]

U (le = Vo) (=aee-1) + Ee | Y_0°U" (loj = Vi) leasi | =0

i=1

where 1 is the vector whose components are all 1.



Smooth Transition Quantile Capital Asset Pricing Models with Heteroscedasticity
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Abstract

Capital asset pricing model (CAPM) has become a fundamental tool in finance for
assessing the cost of capital, risk management, portfolio diversification and other
financial assets. It is generally believed that the market risks of the assets, often
denoted by a beta coefficient, should change over time. In this paper, we model
time-varying market betas in CAPM by a smooth transition regime switching CAPM
with heteroscedasticity, which provides flexible nonlinear representation of market
betas as well as flexible asymmetry and clustering in volatility. We also employ the
quantile regression to investigate the nonlinear behavior in the market betas and
volatility under various market conditions represented by different quantile levels.
Parameter estimation is done by a Bayesian approach. Finally, we analyze some Dow
Jones Industrial stocks to demonstrate our proposed models. The model selection
method shows that the proposed smooth transition quantile CAPM-GARCH model is
strongly preferred over a sharp threshold transition and a symmetric CAPM-GARCH

model.
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Cyclic cubic regression spline smoothing and
analysis of slowly changing cyclic variation
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Jun’ichi Takeuchi and Mariko Tsurusaki
Graduate School of Information Science and Electrical Engineering,

Kyushu University, Fukuoka, Japan.

BRANCBIT B HR— b7+ VA DRI, BRAGDIFICEOTIIEENTERD, Cover B, HEIHZ 1
HLTaLZN—P)ILR— T+ U A OPHAZIRE LT (1] ). FRS, K—F T+ VU A OMEEZ/RT wealth
ratio @ minimax EZEH L TW5 [2]. T74&bD D5, stock B m OifiFIc BT, Constantly Rebalanced
Portfolio (CRP) &MHIN DMK D 7 5 X722 —77w b & LTz & &, minimax log wealth ratio &

m2_1 log%—klog/s/JB(G)dH—ko(l)

Lixd. JiZl, 01&, 7IVT7 7 Xy M m OZIE Bernoulli ET7IVD/8T A—%, Jp 1 6 O Fisher ik
&, n 3G IHBZET. 7, o(1) &, n WRELABZICDON OIS 28 THS. TDHR, OfENL
ZN—)LT— R [EHEIC B % ZIH Bernoulli €7 /)UICEIT % minimax regret[3] £ 2R TH BT &HH]
HU7z [5]. regret ZMIEEO—MTHD, LT=N\—HP)IL7— R [EAHROFMEEREL U CEA I NG 3. Lido
BIfRIE, 2=NN—P)VR— T+ VA DOPHA L, T—REMEDZN L OWBLEEDRNTH .

AFETIE, TOMGRERBLXHEFTZ72DIC, 2oN—PVR— kT3 UFEIZN—Y LT —X/E
feOFHHA [3] TIC 5. 974D BH, CRPICHIGT 2MEREED 7 T AERL, Thex—7y b LGt
@ minimax regret I DWTELT 5. 7z, CRPICHILT 2 HEFMEIIEEN Markov €7V (HMM) & &
TEBHTEIEHL, CRP Z—f{bL7cZ—7 v 75 A& LT, Constant Markov Portfolio (CMP) %2
#£95%. THIC, CRP & CMP A HMM Tbh 5 &ZRH LT, $h#EMNEL=/N\—)L7)LdV X Lz2HiE
5.

AFERE, T[4 IKHDOTVS.

SE R

[1] T. M. Cover & J. A. Thomas, Elements of Information Theory, second edition Wiley-Interscience,

2006.

[2] T. M. Cover & E. Ordentlich, “Universal Portfolios with Side Information.” IEEE Trans. on Inform.
Theory, 42(2):348-363, March 1996.

[3] Y. M. Shtar’kov, “Universal sequential coding of single messages,” Problems of Information Trans-
mission, vol. 23, pp. 3-17, July 1987.

[4] M. Tsurusaki & J. Takeuchi, “Stochastic Interpretation of Universal Portfolio and Generalized Target
Classes,” Proc. of 2011 IEEFE International Symposium on Information Theory, 2011.

[5] Q. Xie & A. R. Barron, “Asymptotic minimax regret for data compression, gambling and prediction,”

IEEE trans. 1T vol. 46, no. 2, pp. 431-445, 2000.



Machine learning methods for brain machine interface

Shin Ishii (Kyoto University)

Bain machine interface (BMI) is a technology to directly connect brains and computers.
It recently emerges due to the progress in neuroscience, signal processing and machine
learning. In this talk, I put my focus on the non-invasive BMI; that is, there is no need
for surgical operation. Magneto-encephalography (MEG) becomes recently available to
measure in millisecond order magnetic fields produced by neural activities in the brain.
Since we try to detect brain activities with fine temporal resolution, MEG is an
attractive brain measurement modality. In order to extract brain’s information
processing from MEG, we may need to solve a statistical inverse problem, because the
forward process is disturbed by various probabilistic factors and distortions, so it has
been a target of statistical inference. However, this statistical inference problem usually
suffers from a serious ill-conditioned situation; the possible activity source location in
the brain may have a wide variety whose possibility number may become for example
25000, while the number of measurement sensors is typically up to 400. That is, the
inverse regression is completely ill-conditioned. So, some constraints like sparseness are
definitely necessary. A previous study [1] presented a hierarchical Bayesian approach,
in which the hierarchical prior called automatic relevant determination encourages
many source components to be zero in effect. Another recent study has presented its
dynamical version [2]; although the previous method [1] did not consider any dynamics
in the brain activities, its dynamical version assumes the component-wise
auto-regression (AR) process for the latent brain activities along time. If the AR
parameters are estimated to be all zeros, the extended version reduces to the previous
(no-dynamical) one. Then, this dynamical version has a temporally smoothing factor as

well as the sparseness due to the Bayesian setting.

In the talk, I next introduce our network estimation method [3]. In the previous study,
an individual AR process was assumed, but there was no consideration of special or
functional structures of cortical activities. If we are interested in such coordination
structure in the cortex, it is the issue of network estimation. Although there are many
methods for network estimation in a particular interest in its static structure, there are
only few for their dynamic counterparts. When we attempt to extract dynamically
changing network structure from observation time-series, the ill-conditioned-ness
becomes more serious, because we have to basically estimate the network parameter for

every time point along the time-series. There should be more strong constraints other



than the sparseness. According to our method, we introduce, in addition to the L1 norm
penalty term which encourages sparseness, the nuclear norm penalty term is attached
to the optimization problem. Interesting is, if the objective function is convex, the total
optimization problem is also convex even with the L1 norm and nuclear norm terms, so
techniques for convex optimization can be used after some newly introduced
modifications. As a benchmark test, we evaluated the prediction performance of the
estimated network, when applied to the dataset of US senate roll-call votes. Our
estimation method for dynamically changing network structure successfully achieved a
higher prediction performance, in terms of cross-validation pseudo-likelihood, than its
static version or the method without the low-rank regularization. We are currently
working on the combination of such a network estimation model and a forward physical

model, in order to realize a more sophisticated BMI analysis tool.
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TailCor: a new measure for tail association

David Veredas (Univ. Libre de Brussels)

(oint with Lorenzo Ricci)

Abstract:

A quantile-based method to measure tail correlations within the elliptical class
distributions (TailCor) is proposed. It differs from tail dependence in that TailCor is not
based on tail asymptotic arguments, and hence can be applied to any probability level.
The use of TailCor is straightforward: it is a simple function and it disentangles the
contribution of linear and non-linear correlation, the latter depending on the tail index.
A Monte Carlo study reveals the goodness of the measure, both in terms of
computational time and for finite samples. An empirical illustration to a large panel of
securities (the constituents of S&P500) over the financial crisis illustrates the

usefulness of TailCor.



Group LASSO for Structural Break Time Series '

Ngai Hang Chan
Department of Statistics
Chinese University of Hong Kong
Shatin, NT, Hong Kong
nhchan@sta. cuhk. edu. hk

Abstract

Consider a structural break autoregressive (SBAR) process

m+1
Y, = Z ﬁ?Tthll(tjfl <t <tj)+ey,
j=1
where Y, = (171/1-5717 s 7Y;ffp)T7 ﬁ? = ( ;')07 3(‘)17 SR ?p)T € Rp+17 J =

Lio..om+1,1 =1t <t <... <ty =n+1, {t1,...,t,} are change
points, {e;} are independent and identically distributed (i.i.d.) innovations
with zero mean and unit variance. In practice, it is usually assumed that m is
known and small, because a large m would involve a huge amount of compu-
tational burden in parameters estimation. By reformulating the problem in a
regression variable selection context, the group least absolute shrinkage and
selection operator (LASSO) is proposed to estimate an SBAR model when
the number of change points m is unknown. It is shown that the number of
change points and the locations of the changes can be consistently estimated
from the data and the computation can be efficiently performed. Further-
more, the convergence rate of the breaks is shown to be nearly optimal.
An improved practical version that incorporates group LASSO and stepwise
regression variable selection technique is discussed. Simulation studies are
conducted to assess the finite sample performance.

"Waseda Time Series Symposium, Waseda University, Tokyo. Feb 27 — March 4, 2012.
Joint work with C.Y. Yau and R.M. Zhang. Research supported in part by grants from
HKSAR-RGC-GRF.



Frequency Domain Techniques in the Analysis of DNA Sequences

David Stoffer, (University of Pittuburgh)

Abstract:

The concept of the spectral envelope for analyzing periodicities in categorical-valued
time series was introduced in the statistics literature in Stoffer et al. (1993a) as a
computationally simple and general statistical methodology for the harmonic analysis
and scaling of non-numeric sequences. In the process of developing the technology,
many possible interesting adaptations became apparent; for example, Stoffer & Tyler
(1998) consider the maximal squared coherency between two categorical-valued time
series. One of the most interesting directions was the use of the technology in the
analysis of long DNA sequences. A benefit of the techniques was that it combined
rigorous statistical analysis with modern computer power to quickly search for
diagnostic patterns within long DNA sequences. The methodology is closely related to
frequency domain principal component analysis and canonical correlation analysis of
time series. I will present some of the theory and methods of the spectral envelope and
related techniques, various analyses of DNA sequences are included. The investigations
focus primarily, but not exclusively, on the analysis of viruses. The problems addressed
concern period lengths in nucleosome positioning signals, optimal alphabets in codon

usage, and sequence alignment.



Robust portfolio estimation under skew-normal return processes

Alexandre Petkovic (Waseda University)

Abstract:

In this talk, we study issues related to the optimal portfolio estimators and the local
asymptotic normality (LAN) of the return process under the assumption that the return
process has an infinite moving average (MA) (o) representation with skew-normal
innovations. The paper consists of two parts. In the first part, we discuss the influence
of the skewness parameter 6 of the skew-normal distribution on the optimal portfolio
estimators. Based on the asymptotic distribution of the portfolio estimator § for a
non-Gaussian dependent return process, we evaluate the influence of & on the
asymptotic variance V(6) of §. We also investigate the robustness of the estimators of a
standard optimal portfolio via numerical computations. In the second part of the paper,
we assume that the MA coefficients and the mean vector of the return process depend on
a lower-dimensional set of parameters. Based on this assumption, we discuss the LAN
property of the return’s distribution when the innovations follow a skew-normal law.
The influence of 6 on the central sequence of LAN is evaluated both theoretically and

numerically.



Joint estimation of copula and quantiles for time
series

Hiroaki Ogata

Waseda University
hiroakiogata@aoni.waseda.jp

We consider a bivariate strictly stationary process {Y; = (Y14, Yot)',t €
Z} and assume a realization {Y;,t = 1,...,T}. Denote the joint distribution
function of (Y74, Y2:)" and the marginal distribution functions of Y3; and Y3; by
F(-,-), F1(:) and F5(-), respectively. For a given pair of numbers 0 < uj,us < 1,
we are interested in estimating their quntiles

@ = F Y (w), g2 = Fy H(u)
and copula
¢ = Clur,up) = F(FT ' (w), F5 ' (uz))
where F| L and F{l are quasi inverse functions of F; and F5, that is,
F ' ug) = inf{y|Fj(y) > u;}, (j=1,2).
We denote the interested quantities by @ = (¢1,¢2,¢)’ and their true values by

0o = (q10, q20, o).
To estimate @, we make use of the function

K(z) = /w k(z)dz

where k(z) is a kernel function satisfying Assumption 1, which is mentioned
later. We construct the estimating functions:

- Y]
w1t(9) :K(Q1 . 1t>_u17

-Y:
w2t(0) :K<q2 215)_,“27

h
wt(e) _ K<Q1 hYM)K(QQ hY2t>C’




where h = hp is a bandwidth. Now, we formulate the penalty function

Qr(®) = Qr(0)(Y1,...,Yr;0)
{w1r(68)} + {w2r(0)}* + {wr(0)}

where
1 X
w;r(0) = ﬁ;wjt(e)a (j=12)
1z
wr(0) = ﬁ 2 wy ()

and consider to find @ minimizing the penalty function. That is, the estimator
is defined as

O = arg moin Qr(6).
We give the assumptions on the kernel function, the bandwidth and the process.

Assumption 1 (Kernel function and bandwidth) (i) Bandwidths satisfy
Th* — 0.

(ii) The kernel k(z) has a support (—1,1).
(i) The kernel k(z) is symmetric.

(iv) The kernel k(z) has a bounded derivative &'(z).

Assumption 2 (Process) (i) The process (Y%) is strong mixing with coef-
ficients a; such that ar = o(T~4) for some d > 1, as T — o0.

(ii) The marginal distribution functions Fj,j = 1,2, are continuously differ-
entiable on the intervals [Ffl(a) — &, Ffl(b) +elforevery0<a<b<1
and some ¢ > 0, with positive derivatives f;. Moreover, the first partial
derivatives of F exist and are Lipschitz continuous on the product of these
intervals.

Then, we obtain the following theorem.
Theorem 1 Under Assumptions 1 and 2,
VT (67 — 60) % N(0, VWV 1.

where V. and W are certain constant matrices.



Dynamic estimation of investment style for Equity managers

Takashi Yamashita (GPIF)

Abstract:

In fund management, manager allocation is one of the most important issues for
investors. Traditionally, many investors use the returns-base style analysis to deal with
this issue. This research indicates the statistical difficulty in practical use. I propose a
dynamic model of returns-based style analysis. We can recognize manager's style drift

and improve manager allocation with this model.



Maximum entropy test for time series models

Sangyeol Lee (Seoul National Univ.)

Abstract:

In this talk, we discuss an application of the maximum entropy test, developed for a
goodness of fit in iid samples by Lee et al. (2011), to time series models including
non-stationary unstable models. Its asymptotic distribution is derived under the null
hypothesis and its performance is investigated through Monte Carlo simulations.

Vasicek's test will be also discussed.



