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1936 4F|Z Fisher 1%, fiAZEHX, -, X, OBIEREG (Z=a %X ++a % X) & Z il b5
ATV, B E NSO ORRAET, Mkt a, -, a, ZUET DHRIH]
BIBEARZE L. ZoERIZ L, ka2 ORMBEIC 2 BEO S & IESMESCH S
WhBMEORE (T7 40y vy —0E]) i< &b HBIB% (Linear
Discriminant Function, LDF) OF|HMNBIES /IS, ZD%, [7 4 v v —0DG] D
fELICIA T LDF 283 b, ITEZOERTER D T ENZ V. Z D% 10 4£LL EIZHT b,
2 ¥IBIEI%L (Quadratic Discriminant Function, QDF), 3 EAb U ¥E, 4| AT 4 v 7
[BUF AT, REARDHT & o 7o BB TR T OBLER EEE S Tz,

—5, BEFRSHARY EEIC R D N — R, R EE D 4 TG N M O HF
ITONT WD, ELT, ~NZ— 30k, EF2H, &L RETHEOSEORAMT, &
ETIRT ) 2205 TR IS TV S.

LoL, HBIGHIZIZRDO L H 72 4 SDORENRSH Y, iy aiiok/ ML
(Minimum Number of Misclassifications, MNM) ZE:¥E|C X % fidE AR5 BE % (Optimal
Linear Discriminant Function, OLDF) T3 TR T & 7= (Shinmura (2011), Hiff (2010) ).
(1) BEHBIBEE £ () 23 £ (x) >0 THAVUTHE 1, £(x)<0 THAUIEE 2 &HBIT 228, H5
R £ (x)=0 OHBIEY-E Lo r—2ADIRRHERREREEREINTE . ZORE
DRI T E 72 EIE LWEENEEE M B . ZORBEEZIE L AT 200, Kk
TEHIRIBEE D FIED—D> T LU E IP-OLDF 7217 Th 5.
(2) BLFEOT —XI1L IFisher DRG] Zii7= 7 b DT 7220, Z O RIXHBISHT O 5EE
LU EFRLTRBY, HRRER 28T 2 & TR DR e b FEE TIESIMED
SOTERE] E VW TETZ. ZNEMRT 5720, 2 WHBIEES S~ T 7 EXOPLEREC X
HEEHER], S HICHAO M EMER SN2, RICT — 2 B2 OEF& 721X, LDF O
APBREITI RN D MM 272 5. 7005, I @)ny b MM HEAE TESLFIUT L 2o 7223, MM
FEVEIC B B B B S, BRI SE VL (Integer Programming, IP) (2 K 52k
7€ IP-OLDF (Revised Optimal Linear Discriminant Function by IP)Z X % &xitafr /i H] 5 BE
BCTLMNFERTE V. FETlE, ERESBEOEMSET TARE VAT 4 v 7ERBHNG
TS, ZHUTREERIYIC LDF <2 2 YA LT, AR u P27 4 v 7 [Alm DA HE
W GROHEEMER) NOWRThD. UL, ARV AT 4 v 7 BUFNIER G 2 REH
T, T —ZIKFE L TWAZ ERNBEHREEZ NS,
(3) LDF X2 2 WHIBIBEEIE, EHDAEIEL TWAHIZH bbb T, RN 5
RBOEEX MR D> TWRo o 72, LDF R0 2 YCHIBIBISUE, HERIREE % & 13 i o ik
ThY, 2HNERSMTOHL I EEIRET HMENR)N-T-.
(4)  FEVEEEEHIBURE O BB N AR TH - 7228, IP-OLDF TZ DRI H o 7= Gk
(1998), Frifth (1999)) .

AR BB DR T, AR DO Z &gz,



AA AFATHET — % (Flury et al. (1988)) 1%, 6 EOFHAME CEAL & {AFLE 2 BEHIBI
LMETH S, FAIIHO T OT —2 0 2 {HOFHINE (X4, X6/ T INI=0 TH Y, MM DI
T (p B O FGEAREHIBIBEEL & 2B O 1 B OFAZE SR N 2 72 B A e 5
BISC, N, =N, DERR B D) D, ZO 2 B EETe T TOHBIEET N0
ThbHZ LRI L.

L2xL, LDF R0 2 YHIBIBAEE, #I oy B vlGe RRIZ B - C 2 BEDVHIBIFIEE, T 72 b
WNI=0) 7257 — 2 2 —fRBICERIR T & V. E£72, AR P AT 4 v 7RI, #RIBHE AT RE
12T — 2 T RIRRE OHEE DN AR ZEIC/2 Y, ISWEHEXMIL 0 2 & K& 2 XHEZE b
S (Firth(1993)) . X512, BRAHCGEINGE, AIC, Cp HgtEix, MIEoEErTHE 72 HIBIfR K
DZEMEY, X0 @BROZEMEZRSE L W) BRSNS D 2 & 2350 7= GHik (2007a)) .

B OSHEX, BWR =0 O¥IRT—2 2Rt LT 5. FEEHIL, 2010 FEL
2011 4R DRER R PR TR D 1 FERAELE X G L LT MERH OFEFAMZHES L, 10 R
100 R o> FhRFRER & KRR 21T~ 72, S OHBIT— % 2T, LDF, 2 RHIBIBE, 4%
BYRAT 4 7 BRI ORAER TERHETE W L Z2nd. iz, BB BErTRE
IR/ (BRI oI, RO MEOE 2 H T X 2 0G0 & MREE L7z CGIrkf
(2011)).

ZDOEFEZEZZIT T 201 I KFEANRE & =5 4 4EW] 15 Rk 105 H 0BT — Z D
%2 CEIMIEZITH Z LI L. AL T, RFEARE X —0 105 HOREBRT —
H DFEIFFFIEZAT DB L, 2010 4R & 2011 SEEDOHEAM DT — & T, AEHEICBIT
2B T O R & RBRE OB RGBT 2 FIEm ORI 21T o 7. T OFEFRIZHES N
T, REARE VX =R 2179 FETHD.
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Empirical likelihood approach to discriminant
analysis for stationary processes

Tomoyuki AMANO (Wakayama University)

Abstract

Empirical likelihood is a non-parametric method and it does not need the
knowledge of the distribution which the data comes from and it is widely
used. However this method is not usually applied to discriminant analy-
sis. Hence we shall apply this method to discriminant analysis and propose
an empirical discriminant function. Then we prove its consistency, which
means misclassification probability converges to 0. Furthermore under con-
tiguous hypotheses the limit of its misclassification probability is derived and
its lowerbound is obtained. We also evaluate its properties by some statistical
methods and its interesting features are obtained by simulation.
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Double Random Walk and Non Stationary Variance

Alexandre Petkovic*

December 26, 2011

1 Introduction

Modeling the volatility of a time series as a nonlinear function of an integrated time series remains a rel-
atively unexplored approach in modern econometrics. A first study was made by Hansen (1995) in the
context of linear regression model. In an empirical paper Park (2002) modeled the variance of assets returns
as a function of an integrated time series. Following Hansen (1995) Chung and Park (2007) studied lin-
ear regression model with integrated and stationary regressors when the error term volatility is a nonlinear
function of an integrated time series. Petkovic (2010) studied a linear regression model with deterministic
regressors when the volatility of the error term depends on an integrated time series.

Following the above work we propose in this note a new family of time series model. The model is a
local to unit root autoregressive process but where the variance of the error term is a function of an integrated
time series. Such a process can be refereed to as double unit root process. We then derive the distribution
of the ordinary least squares estimator of the autoregressive coefficient. Local to unit root autoregressive
processes were introduced by Phillips (1987) who derived the asymptotic distribution of the ordinary least
squares estimator. The results of this note can be seen as a generalization of those derived by Phillips (1987) .

Thought this note — 4 will stand for convergence in distribution while —,, for convergence in probability
and D|0, 1] will stand for the space of right continuous functions with left limit over [0, 1] endowed with the
Skorokhod topology.

2 The Model and the Assumptions

Consider the following time series model
Yn,t = Qn + enyn,tfl + €nt, t=1,...,n (D

with yo = 0 where 6,, = e®?/", a,, = ¢1/c(n) where ¢(n) is function of the sample size whose properties
will be given bellow. €, ; is the error term which is modeled as

Ent = U(Zt)un,t,

*Waseda University, International Center for Science and Engineering Programs, Faculty of Science and Engineering, Bldg 51
4F, 3-4-1 Ohkubo, Shinjuku (169-8555), Tokyo, Japan, email: apetkovi@aoni.waseda.jp.



where u,, ; is a martingale difference sequence with unit variance with respect to a filtration F, 4, 2; is of the
from

Zt = zt—1 + Wy, )

where w; is some stochastic process with w_; = 0. ¢ a function whose properties will be specified bellow.
We assume that z; is measurable with respect to F,, ;1 implying that (e, ¢, Fp, ¢) is a martingale difference
sequence satisfying

E(€; | Fap-1) = 0% (2).
Definition 1. We say that the function o € H if
o(Ax) =v(N)1(z) +n(x, N
where T is locally Rieman integrable and 1 can be decomposed as
n(x, A) = a(A)A(z),

where a()\) = o(v(\)) and A(z) is locally and exponentially bounded (i.e. A(x) = O(el*!) as |x| — oo).

The above class of function is called asymptotically homogenous. The class H was introduced by Park
and Philipps (1999), examples of functions in A can be found in Chung and Park (2007)

Define

[rn]

1
U, T \qunt n fz[rn] fzwt’

[nr]

We also assume the following (Uy, V;,) —, (U, V) in D[0, 1] as n — oo, where (U, V) is a vector Brownian
motion.

3 The Ordinary Least Squares Estimator

We prove the following

Theorem 1. Let (&, é)’ be the ordinary least squares estimator of model (1). Then

W2l ie s U QS (CR) — G 2@ S €3 (s)ds — 2¢ [ Ci(s)ds)
fo C% - fo Cl ) )
n(é _ 1) (012(1) CQ - 262 fol 012 261 fol Cl(s)ds)

fO 02 dS— fO Cl ))

where

Ci(r) = /OT e”sds%—/or ECQ(T_S)T(V(S))CZU(S)
'y
Cy = /0 T(V(s))ds.



Multi-Step Ahead Portfolio Estimation for
Dependent Return Processes

by Kenta Hamada (Waseda University)
Masanobu Taniguchi (Waseda University)

Let {X; = (X14,...,Xmt) : t € Z} be a zero mean stationary process with m x m spectral
density matrix g(\) = 1/(27)Ag(eM)KAg(e?)", Ag(e?) = Z;io A(j)el*, where K is a non-
singular m x m matrix. Let the spectral representation of {X(¢)} be X; = [ e "dZ()), where
{Z(\) : =7 < X < 7} is an orthogonal increment processes. Hannan (1970) (Theorem 1 of
Chapter IIT) described the best linear predictor X?eSt based on X;, X;_1,... by

XPest — /Tr e M LA () — Ag(0)} Ag(ei’\)_le()\).

—T
We can consider the problem of misspecified prediction based on a conjectured spectral density

matrix f(A) = 1/(27)As(e)Ag(e)”, where Ag(z) = Y izo a§-f)zj, (2 € C). Then the pseudo

linear predictor computed on the basis of f(\) is given by

X{)—best(f) _ /ﬂ- 2 {Af(ei)\) _ Af(O)} Af(ei)\)_ldz(/\)a

where A¢(0) = I,,, and I, is the m x m-identity matrix. The prediction error is given by
tr B |{X, — XP7P(F) X, — Xf*best(f)}*] x / tr {£71(\)g(A\)} d.
We can apply this to the h-step ahead prediction. Consider the problem of prediction for X

by linear combination
L
Xepn =Y ()X ji1,
j=1

where ®(j)’s are m x m matrices. This problem can be understood that we fit the following

matrix
—1 *—1
fo(\) = - {To (VT (V) } &)
to g(A), where Tg ™' (A) = I, — Y7, ®(j)ei"*~DA. Here
0= vec(®(1)),...,vec(®(m)) €O CR".

where r = dim @ = L x m2. The best h-step ahead predictor is given by )A(f_beSt(fQ ), where 0 is
defined by

0= arggnin /: tr {fg()\)_lg()\)} dA.

€O J_

Because 8 is unknown we estimate it by Whittle estimator. Suppose that an observed stretch
{Xt,nJrl, Xt,nJrg, ey thl, Xt} is available. Let

L,(A) = dx(\)dx (N)",



where

() =

1 n .
ZXt_n+jelj)\7 —r <A<,
j=1

V2mn 4
The Whittle estimator for 8 is defined by

0, = arg gnin/ tr {fg(A)*In(A)} dX.

co J_.

Then, we have

Lemma 1 (Hosoya and Taniguchi (1982)) Under appropriate regularity conditions,

0., 2% 0.

prbcst

As an estimator of X}, (fg) we can use XP_pest

t+h
the problem of portfolio on {X,}. For a utility function we can define the optimal portfolio aop, =

(f5, ). Suppose that we are now interested in

(0a,..., )" and its estimator dopy based on Xy, ..., X;_,4+1. Under natural assumptions we

may assume
~ a.s.
aopt I aop‘m (2)

(e.g., Shiraishi and Taniguchi (2008)). Then we will estimate the h-step ahead portfolio value
O‘gthHh by

Gop X1 (B, )
In what follows we evaluate the accuracy:

~1 ~rp—Dbest /
aoptxt+h (féw) - aoptxt+h'

Let PE = agthfﬂfeSt(fQ) — a,X¢1n. Then we have,

Proposition 1 Under Assumption 1, it holds that

(i) Gl XDt (fy ) — by Xesn = PE + 0y(1).

us

(i) E{(PE®} = o, / To(M)e(\Te" (A)dAaop.
ooon
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Optimal portfolio with generalized empirical likelihood

Hiroaki Ogata
Waseda University

1 Introduction

The purpose of this talk is to find the optimal portfolio weights. The log-returns of assets
are modeled by multivariate stationary processes rather than i.i.d. sequences. Then, the
variance of the portfolio is written by the spectral density matrix, as shown in (2) below,
and we seek the portfolio weights minimizing it. In practice, we construct the estimating
function for the interested parameters (portfolio weights) in frequency domain, and obtain
the estimator with the method of generalized empirical likelihood (GEL).

2 Frequency domain estimating function

Here we are concerned with the m-dimensional stationary process {X (¢)}+cz with mean
vector 0, the autocovariance matrix I'(h) and spectral density matrix

o0

1 3
= o ['()e A, —T <A<

j=—o00

)

Suppose that information of an interested parameter 8 € © C RP exists through a system
of general estimating equations in frequency domain as follows. Let ¢,;(X;0), (j =1,...,q)
be m x m matrix-valued continuous functions on [—7, 7| satisfying ¢;(\; 0) = ¢;(\; 0)*
and ¢;(—X;0) = ¢;(\;0)". We assume that each ¢;(\;0) satisfies the spectral moment
condition

/ "o (M0 (N} dA =0  (G=1....q) (1)

—T

where 8y = (610, ...,0,0)" is the true value of the parameter. By taking an appropriate
function for ¢;(A; @), the equation (1) can express the best portfolio weights as shown in
Example 2.1 below.

Example 2.1 (Portfolio selection) Let x;(t) be the log-return of i-th asset (i = 1,...,m)
at time ¢ and suppose that the process {X(t) = (21(¢),...,zn(t))'} is stationary with
zero mean. Consider the portfolio p(t) = Y1, 6;x;(t) where @ = (01,...,6,,)" is a vector
of weights, satisfying >_.*, 6; = 1. The process {p(t)} is a linear combination of the sta-
tionary process, hence {p(t)} is still stationary and, from Herglotz’s theorem, its variance
is

Var{p(t)} = 6'Var{X (1)}6 = o’( j f()\)d)\) 6. (2)

Our aim is to find the weights 8y = (610, . . .,0mo)’, that minimize the variance (the risk)
of the portfolio p(t) under the constrain of > ;- 6; = 1. The Lagrange function is given
by

L(6,\) = 0’( ! f()\)dA)O + A0 e—1)

—T



where e = (1,1,...,1)" and X is Lagrange multiplier. The first order condition leads to

(1= eop)( [ 100+ 73ar) o =0 @
where I is an identity matrix. Now, for fixed j = 1,...,m, consider to take
20;(1—0;) (4, 7)-th component
1—26,0, (4,€)-th and (¢, j)-th component with
o;i(N;0) = {=1,....mand £ #j
—26,.0, (k, £)-th component with

k,=1,.... mand k#£j, L #£j

Then, (1) coincides with the first order condition (3), which implies that the best portfolio
weights can be solved with the framework of the spectral moment condition. 1

Based on the form of (1), we set the estimating function for 0 as

m(%;0) = ({6 (A O) L (M)}, - tr{dg (A a)Jn(At)})'

where I,,(\) is the periodogram, defined by

I,(\) = (2mn) ™! {Zn: X (1) exp(it)\)} {Zn: X (t) exp(it)) }

t=1 t=1
and Ay = (27t)/n, (t = —[(n—1)/2],...,[n/2]). Then, we have
/2] .
Y Emeo - | [ alo sy <o
—[(n—1)/2] - Jj=1l,....q

3 Generalized empirical likelihood

Once we construct the estimating function, we can make use of the method of generalized
empirical likelihood (GEL) as in Smith (2004) and Newey and Smith (2004). GEL is
introduced as an alternative to generalized methods of moments (GMM) and it is pointed
out that its asymptotic bias does not grow with the number of moment restrictions, while
the bias of GMM often does.

To describe GEL let p(v) be a function of a scalar v that is concave on its domain, an
open interval V containing zero. Let An(O) ={A: XNm(X\;0) e Vit =1,...,n}. The
estimator is the solution to a saddle point problem

OceL = argmin  sup Zp XNm(A; 0) .
0€O xeh,(0) 151

The empirical likelihood (EL) estimator (cf. Qin and Lawless (1994)), the exponential
tilting (ET) estimator (cf. Kitamura and Stutzer (1997)) and the continuous updating
estimator (CUE) (cf. Hansen et. al. (1996)) are special cases with p(v) = log(1l — v),
p(v) = —e¥ and p(v) = —1/2(1 + v)?, respectively. Let Q = E[m(A; 00)m(As;60)],
G = E[0m(A;60)/00] and ¥ = (G'Q71G)~ L. Under regular assumptions, we obtain the
following theorem.

Theorem 3.1 /n(0cer, — 60) = N(0,%).



Bartlett correctability of empirical likelihood ratio test

for a parameter subvector in the over-identified case
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ASYMPTOTIC PROPERTIES OF TIME SERIES NON-LIFE
INSURANCE MODEL

KENTARO KOBAYASHI AND JUNICHI HIRUKAWA
NIIGATA UNIVERSITY

The object of main interest from the point of view of an insurance company is
the total claim amount process or aggregate claim amount process S(t), which is
composed of the claim number process N (t) and the sequence of claim size {X;}.
One would like to find sufficiently realistic, but simple, probabilistic models for
S(t), N(t), and {X;}. In the classical non-life insurance model, the sequence of
claim size {X;} is assumed to be ii.d. process (see Mikosch (2004)). However,
this assumption is quite unrealistic. The claim size sequence {X;} should contain
the time dependent structure. Here, we suggest to employ the locally stationary
processes as the claim size sequence. We will derive the extension of central limit
theorem (Anscombe’ Theorem (see Gut (1988))) for the locally stationary non-
life insurance model. We will also present the functional central limit theorem
(Anscombe-Donsker Invariance Theorem (see Gut (1988), Billingsley (1968))) in
our case.

Now, we can define the claim number process N(t) = #{i > 1:T; < t}, t > 0,
ie., N = (N(t))t>0 is a counting process on [0, 00). N(t) is the number of the
claims which occurred by time ¢. The object of our main interest is the total
claim amount process S(t) = Zi]i(f) Xi, t > 0. The process S = (S(t))t>0 is
random partial sum process which refers to the fact that the deterministic index n
of the partial sums S, = X; + --- + X, is replaced by the random variables N (¢):
S(t) = X1 +---+ Xn@), t >0. It is also often called a compound (sum) process.
The following lemma is greatly useful.

Lemma 1 (Anscombe’ Theorem). Suppose that Z,, 4 Z,n — oo and N(t)/n(t) 5
1 as t — oo, where {n(t)} is a family of positive numbers tending to infinity, and
that

(A Given € > 0 and n > 0 there exists 0 > 0 and ng, such that
P{maxm:\m—n\<n6|zm — Zn| > €} <m, forall n>ng

Then Zy ;) converges in distribution to Z ast — oo .

Now, we introduce locally stationary processes X , (see Dahlhaus (1996a,b)):

X =10 () + s (o) € 01,

where {ug n} is generated by the following time varying MA (co0) model

> k > kN ., k
Uk,n:Zal - Ekflzzal - Ley=a E’L €k

1=0 =0



with a (u, L) = Y52 oy (u) L, oy(u) € C[0,1], 1 =1,2,..., are time varying MA
coefficients and {e;, s > 1} is s set of independent random variables, such that
Eles] = 0 and E[es] = 2. Using this locally stationary processes, we define the
total claim amount process {S,} as

n
Sn=> Xin.
k=1

Theorem 1. (Central Limit Theorem) For locally stationary stochastic processes
{Xk n}, we have the following central limit theorem:

= S

Zp = \/—% AN (Vnps,02) asn — oo,
where p, = fol p(u)du and 02 =300 fol J7 f(u, e ddu.

Finally, the generalization of B-N decomposition for locally stationary processes
is given by

k k
Upp = <—, 1) €k — Ekyns Ekn = Q <_7L> (1= L)ey,
n n

where & (u, L) = 3,20 & (u) L, @ (u) = 3272, aj (u). Let S, = S, —nu and
define partial sum process

X (tw) = —=S (W), (0<t<T).

1
ovn
Using B-N decomposition, we have X, (t) = fg a (u,1) dW (u) (Functional Central
Limit Theorem). Furthermore, we have the following result.

Theorem 2 (Anscombe’ Theorem & Anscombe-Donsker Invariance Principle).

Suppose %:) L 0, then
1 s J .

Y, (t,w) = ———8.N(n.w)(w) = W(t) (Anscombe-Donsker Invariance Principle),

() = s SeNman(®) 3 WO ( ple)

SN(n

IN(n) = _ONGm) A W(1) ~ N(0,1) (Anscombe-Theorem).

(n)

oy/N(n)
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Monitoring the intraday volatility pattern

Siegfried Hormann
Département de Mathématique
Université Libre de Bruxelles

A functional time series consists of curves, typically one curve per day. The most impor-
tant parameter of such a series is the mean curve. We propose two methods of detecting a
change in the mean function of a functional time series. The change is detected on line, as
new functional observations arrive. The general methodology is motivated by and applied
to the detection of a change in the average intraday volatility pattern. The methodology
is asymptotically justified by applying a new notion of weak dependence for functional
time series. It is calibrated and validated by simulations based on real intraday volatility
curves.

The talk is based on joint work with P. Kokoszka and R. Gabrys.



Which models to match?

(David Veredas, Roxana Halbleib and Matteo Barigozzi)

Most of the inference techniques based on matching (e.g. GMM, Indirect
Inference, Efficient Method of Moments or the Method of Simulates
Quantiles) depend on a subjective choice of the theoretical parametric
functions that are used to estimate the parameters. In this article we
develop a criteria for choosing them. The criteria is based on the likelihood
ratio between the asymptotic distributions of estimators under two sets of
theoretical functions. Both distributions are Gaussian, consistent but with
different variance-covariance matrices. The criteria is suitable for choosing
among nested functions, e.g. one set of moments versus a larger one, or one
auxiliary model that is nested into another but also for non-nested sets of
functions, such as two different estimation methods, two sets of moments, or
two auxiliary models. A thorough Monte Carlo study based on two simple,
yet important and illustrative, models shows the usefulness of the criteria.



Classification in segmented regression problems

Cathy WS Chen

Department of Statistics,
Graduate Institute of Statistics & Actuarial Science
Feng Chia University
Taichung 407, Taiwan

Heterogeneity in many datasets stems from the different behaviors of several
underlying groups or subpopulations. The aim of this paper is to classify
observations in such a dataset into these latent groups when each group's
behavior is piecewise linearly related to a set of covariates. We assume that
each group can be represented by a segmented regression model, but the
group membership for each observation is unobserved or lost. A full Bayesian
approach is proposed to simultaneously classify observations and estimate
segmented regression parameters. The estimated marginal likelihood and the
Deviance Information Criterion are used to select the number of mixture
groups. We demonstrate the accuracy and performance of the proposed
MCMC estimators in a simulation study and illustrate the methodology in an
empirical study.



Local Linear Regression on Manifolds and its
Geometric Interpretation

Ming-Yen Cheng
Department of Mathematics, National Taiwan University, Taipei 106, Taiwan.

Hau-TiengWu
Department of Mathematics, Princeton University, Fine Hall, Washington Road,
Princeton NJ 08544-1000, USA.

High-dimensional data arise frequently in many fields of contemporary science.
For example, medical images, genetic microarray data, or functional data are observed
over time and with different candidate predictors. In addition, it is common that
the sample size is small compared to the dimensionality of the data. In the linear
regression setting, variable selection is one of the fundamental problems and has been
extensively studied in the literature. When the dimension p is large, it becomes a
difficult task to estimate the finite number of parameters because significant variables
can be highly correlated with some of the unimportant variables. The rationale for
variable selection is that only some of the regression coefficients are nonzero, so the
principle is to regularize the parameter estimation problem by penalizing the spurious
regression coefficients. Parametric regression is often too restrictive and results in
large bias. There has been a vast amount of literature on nonparametric regression
because it relaxes the restrictive model assumptions in parametric regression, thus
can capture the underlying structure in a flexible way and avoid the excessive bias
induced by model mis-specification in parametric regression. However, when the
dimensionality is high, nonparametric models suffer from the curse of dimensionality
problem i.e. the estimation accuracy deteriorates rapidly as p increases. Variable
selection and dimension reduction become even more difficult in this setting. In fact,
almost all the existing dimension reduction methods are based on the assumption that
a (linear) central dimension reduction space, denoted as CS, exists and are focused
on estimation of that. A a consequence, models built on results of these methods are
closely related to some special cases in semiparametric regression such as multiple-
index models. Semiparametric regression is an emerging area because it enjoys both
the modeling flexibility of nonparametric regression and the modeling stability of
parametric regression discussed in the above. Owing to the above considerations,
there has been an increasing trend in studying variable selection in the semiparametric
regression setting. On the other hand, the key motivations here are existence of CS
and sparsity of nonzero constant coefficients or functions, called global assumptions,
which may not be easily validated in practice. This is one of the motivations of
our approach to model the regression function on the underlying manifold of the
explanatory variables.



When the dimension of the predictors is high, it has been observed that the data
usually lie on a lower dimensional manifold (Hall, Marron, and Neeman:2005; Bickel
and Li, 2007; Jung, Foskey, and Marron, 2011; Aswani, Bickel, and Tomlin, 2011). We
study nonparametric local linear regression when the predictors in this case. Recently
Aswani, Bickel, and Tomlin (2011) suggested to regularize the local linear regression
problem, performed in the ambient space, using information obtained by learning the
manifold. By contrast, our approach is to construct local linear regression directly
on an approximation to the manifold, thus is faster to compute when the dimension
of the ambient space is large. Under mild conditions, asymptotic expressions for
the conditional bias and variance of the proposed estimator are derived for both
interior and boundary cases. One implication of this is the optimal convergence
rate depends only on the intrinsic dimension d of the manifold, like in the usual
multivariate nonparametric regression, but not on the dimension of the ambient space
p. Another implication is that, in the diffusion map framework, the proposed method
can be used to estimate Laplace Beltrami operator when in the interior and can
be used to estimate linear combinations of the second order covariant derivatives
when close to the boundary provided that the boundary is smooth. Further, the
bias and variance expressions are used to construct a simple and effective bandwidth
selection rule. An extensive simulation study and an example are used to compare
the computational speed and estimation accuracy of our method with existing ones
for various combinations of sample size, p, and d.

Keywords. bandwidth selection, classification, diffusion map, dimension reduction,
manifold learning, nonparametric regression.
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Statistical Arbitrage and Fractional Cointegration !

Ngai Hang Chan
Department of Statistics
Chinese University of Hong Kong
Shatin, NT, Hong Kong
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Abstract

This talk discusses some of the recent developments of statistical arbitrage
and fractional cointegration. By virtue of some of the asymptotic results
about fractional co-integration tests, a pair-trading strategy is constructed
from which statistical arbitrage can be developed. The talk concludes with
some of the applications to financial data.

"Wakayama Time Series Symposium, Wakayama University, Japan. Dec 2-4, 2011.
Research supported in part by grants from HKSAR-RGC-GRF.



Skew-symmetric distributions and Fisher information

Marc Hallin
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and
O.R.EE., Princeton University, Sherrerd Hall, Princeton, NJ 08544, USA
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Triomphe, CP210, 1050 Brussels, Belgium

Keywords: Skewing function, Skew-normal distributions, Skew-symmetric distributions, Singular

Fisher information, Symmetric kernel

Skew-symmetric densities recently received much attention in the literature, giving rise
to increasingly general families of univariate and multivariate skewed densities. Most of
those families, however, suffer from the major drawback of a potentially singular Fisher
information in the vicinity of symmetry. All existing results indicate that Gaussian densi-
ties (possibly after restriction to some linear subspace) play a very special and somewhat
mysterious role in that context. In this talk, we totally dispel that widespread opinion by
providing a full characterization of the information singularity phenomenon, highlighting
its relation to a possible link between symmetric kernels and skewing functions—a link that

can be interpreted as the mismatch of two densities.
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Covariance Tapering for Prediction of Large Spatial
Data Sets in Transformed Random Fields

Toshihiro Hirano and Yoshihiro Yajima
University of Tokyo and University of Tokyo

Interpolation of a spatially correlated random process is widely used in mining, hydrology,
forestry and other fields. This method is often called kriging in geostatistical literature and
requires the inverse of the covariance matrix of observationsfiardnt spatial points. The
operation count for computing the inverse is of ord@with sample sizen. Hence as the
sample size is larger, the computation becomes a more formidable one in practice.

To deal with this problem Furrer et al. (2006) proposed covariance tapering. A basic idea
of covariance tapering is to reduce a spatial covariance function to zero beyond some range by
multiplying the true spatial covariance function by a positive definite but compactly supported
function. Then the resulting covariance matrix is so sparse that it is much easier and faster to
obtain its inverse matrix. Furrer et al. (2006) proved the asymptdiiciency of the BLUP
using covariance tapering which we call the tapered BLUP for the original BLUP. Zhu and
Wu (2010) investigated properties of covariance tapering for convolution-based nonstationary
models and proved that the BLUP is asymptoticatlycgent in specific assumptions.

An alternative approach to reduce the computational time of the inverse matrix is to cal-
culate a spatial prediction based on a small and manageable number of observations that are
close to a prediction point. This approach often shows good performance. However, it is not
clear how we may choose samples in a neighborhood of the prediction point and theoretical
properties are not derived completely. On the other hand, in covariance tapering it is shown
that the MSE ratio of the tapered predictor and the true predictor converges to 1 as the sample
size goes to infinity regardless of the selection of the taper range (Furrer et al. (2006)).

Covariance tapering is also used for the estimation of parameters of a covariance function.
The log-likelihood function of Gaussian random fields includes the determinant and the inverse
of the covariance matrix between the observationsfiednt spatial points, which it isfdlicult
to calculate for large data sets. Kaufman et al. (2008) applied covariance tapering to the log-
likelihood function and showed that the estimators maximizing the tapered approximation of
the log-likelihood are strongly consistent. Du et al. (2009) proved that this tapered MLE has
the asymptotic normality in one dimensional case. Recently, Wang and Loh (2011) showed the
asymptotic normality of the tapered MLE in multidimensional case by letting the taper range
converge to 0 when the sample size goes to infinity.

The BLUP is identical with the conditional expectation if an underlying random field is
Gaussian and consequently is the optimal predictor in the MSE sense whereas if an original
data takes a nonnegative value or has a skewed distribution, we frequently apply a nonlinear
transformation to it to get a data which is nearer Gaussian. Typical ones are a chi-squared
process and a lognormal process (Cressie (1993)). For example a precipitation data is approx-
imately regarded as a chi-squared process because the standardized square root values known
as anomalies are closer to a Gaussian distribution (Johns et al. (2003) and Furrer et al. (2006)).
On the other hand the variable such as topsoil concentrations of cobalt and copper takes a

1



positive value and has a right skewed sampling distribution. This kind of spatial data is often
obtained in large numbers and modeled by the lognormal distribution (Moyeed and Papritz
(2002) and De Oliveira (2006)). However the optimality of the BLUP and the tapered BLUP
for an original data is not clear because it is non-Gaussian.

We consider the class of the transformatiofs) = T(Y(s)) where{Y(s)} is a Gaussian
random field with zero-mean and unit variance. If we ass&figY(s))?) < oo, T(:) can be
expressed by the Hermite polynomial expansion. Granger and Newbold (1976) considered
this class of the transformed models in a time series context and calculated the mean, the
covariance function and the mean squared error of predictors. Our work can be also regarded
as an extension of their results to spatial processes. Moreover since the conditional mean of
Z(so) given{Y(9)} requires the inverse of the covariance matrixfs)}, covariance tapering
is useful to reduce the computationaffatiulty.

Finally we show that the BLUP, the BLUP using covariance tapering and the optimal pre-
dictor are asymptotically equivalent in the MSE sense if the covariance function of the under-
lying Gaussian random field is M&in type. This is an extension of Furrer et al. (2006). Monte
Carlo simulations support theoretical results.
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Let (X, )nen be a strictly stationary process with a stationary distribution function
(df) F, and denote by F,, the empirical df based on the sample Xi,...,X,,. Consider a
general L-statistic of the following form:

1
T, = 5 Z Cm'h(Xn:i);
=1

where c¢,;’s are constants, and X,.;1 X, -+ X,., are the order statistics based on
the sample X1,...,X,,. Let g:=hoF ! and de ne the centering constants

1
fn, ::/0 g(u)Jp(u)du = /[071} g(u) dW, (u).

Consistency is a basic desirable property of statistical estimators. We can show that
under very weak integrability conditions, we have T}, u, — 0, a.s. This result was stated
and proved in van Zwet (1980) for the i.i.d. case, but his proof remains to be valid for the
ergodic case.

We also prove the asymptotic normality of T}, with conditions which are slightly weaker
than the ones in the existing literature. We require that the observations (X, )nen be
strongly mixing with a certain decaying rate of the mixing coefficient. We also assume the
bounded growth of g and J,, and smoothness of J,. Let Cix(u,v) :=P(&  u, & )
and put

o0 o

(u,v) :==uAv uv+ Z[Ck(u, v)  w]+ Z[C’k(v,u) uv).
k=2 k=2

Then we show that the asymptotic normality of the general L-statistic:

\/E(Tn /‘n) E_) N(O’ 2)
o 2':/1/1 (u,v)J (u)J (v) dg(u)dg(v) < o0
=] |

When we try to construct approximate con dence intervals for L-statistics, we need to
estimate the asymptotic variance. This asymptotic variance can be represented as the sum
of the autocovariances of a certain stationary sequence of random variables Y,, de ned by

%Z/meg}FWNWWNWW

And it is in turn equal to 2 times the value of spectral density at frequency 0. The only
difficulty is that we cannot observe Y,, because it involves the unknown df F. Then it is
natural to replace it with the empirical df F,, and use instead

Yin = /OO [1{Xi§$} Fp(2)]J(Fp(x))dh(x), i=1,...,n.

e e}



Let

n k
- 1 ~ 1 -
(k) := - E YinYiten and f,(0):= 7 E w(k/Kp)Vn (k).

and

Fu0) = 5 32 wlh/Kain(k) (1)

|k|<Kn

where w is a so-called lag window. Then 2 ﬁl(O) give a consistent estimator of the
asymptotic variance 2 under certain regularity conditions.
We apply the above results to distortion risk measures of the following form

»(X) ;:/ F Y(u)dD(u) = / xdD o F(x), (2)

[0,1] R
where D is a convex distortion function, which is simply a df D on [0, 1] A natural estimator
of (X)is

1 n
= /0 Fnl(u) dD(u) = Zcm-Xm-, (3)
i=1

where ¢,,; := D(i/n) D((i 1)/n), and this is a simple L-statistic.
It is easy to see that

o0

0 e’}
1 = X X X X
E /[ JE@anw) = J B DE e+ [ B DEL@)
0 0o
[ DEE@) T [T1 DEE@)d = [ F )
0o 0 [0,1]

Therefore E(7,)  (X) 0, ie., 7, has a negative bias. We show that the moving block
bootstrap can be used to correct the bias with weakly dependent data.

In simulation study, we introduce the following simple stochastic volatility model to
evaluate the bias and root mean squared error (RMSE). Let X; = ;Z; and suppose that
V; := 1/ ? follows the rst-order autoregressive gamma process introduced in Gaver and
Lewis (1980):

Vi= Vi1+e,

where V; has a gamma distribution with shape parameter and inverse-scale parameter
B for each t, (g¢) is a sequence of i.i.d. random variables, and 0 < 1. It is known that
the distribution of &; is compound Poisson. Let (Z;) be a sequence of independent random
variables with standard normal distribution, which are also independent of (g;). Then it
is well known that X; has a scaled t-distribution with 2 degrees of freedom and scale
paprameter 3/ . This allows us to calculate the true values of VaR, expected shortfall,
and proportional odds risk measure.

The bias is not of serious size, and the moving block bootstrap seems to be working
reasonably well. The estimated RMSEs are large probably reflecting the heavy tail of the
t-distribution with four degrees of freedom. Although RMSE is slightly smaller for every
risk measure in the i.i.d. case, there does not seem to be a big difference in the behavior of
the estimates between in the stochastic volatility case and i.i.d. case, reflecting the quite
weak dependence in this stochastic volatility model.
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[Asymptotic Normality of Estimators derived from Rank Statistics for
Generalized Lehmann's Alternative Models when the Observations are a
sequence of weakly dependent random variables: a General Model and
special cases including Skew Symmetric models. |
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In his book(1993) Kariya proposed a government bond (GB) pricing model that
simultaneously values individual fixed-coupon (non-defaultable) bonds of different
coupon rates and maturities via a discount function approach, and Kariya and Tsuda
(1994) verified its empirical effectiveness of the model as a pricing model for Japanese
Government bonds (JGBs) though the empirical setting was limited to a simple case.
In this paper we first clarify the theoretical relation between our stochastic discount
function approach and the spot rate or forward rate approach in mathematical finance.
Then we make a comprehensive empirical study on the capacity of the model in view of
its pricing capability for individual GBs with different attributes and in view of its
capacity of describing the movements of term structures of interest rates that JGBs
imply as yield curves. Based on various tests of validity in a GLS (Generalized Least
Squares) framework we propose a specific formulation with a polynomial of order 6 for
the mean discount function that depends on maturity and coupon as attributes and a
specific covariance structure. It is shown that even in the middle of the Financial Crisis,
the cross-sectional model we propose is shown to be very effective for simultaneously

pricing all the existing JGBs and deriving and describing zero yields.

This paper has two distinct objectives. One is to show that our stochastic discount
function approach has a theoretical legitimacy in pricing non-defaultable bonds or
equivalently government bonds (GBs) and deriving a term structure of interest rates in
comparison with the interest rate approach in mathematical finance, which is rather
dominant in pricing bonds and interest derivatives. Another objective is to show an
empirical effectiveness of our cross-sectional model in pricing Japanese government
bonds (JGBs) and describing variations of term structures of interest rates that JGBs
1imply. We also make a comprehensive empirical analysis on time series variations of
implied interest rates and swap rates in the Financial Crisis Period.

The first objective is treated in Sections 2 and 3. A main feature of this model is that



a stochastic realization of each individual GB price at present time 0 is viewed as
equivalent to a realization at O of the whole stochastic process of the random cash-flow
discount rate, which is defined on its term to maturity and depends on attributes of each
individual bond such as coupon rate, term to maturity, etc. Another feature associated
with the first one is that the cross-sectional correlation structure of all the GB prices at
0 is obtained through that of the corresponding random discount functions. Though this
model is a cross-sectional model as it stands, it can be extended to certain types of
dynamic models, which will be discussed elsewhere.

On the other hand, in time-continuous mathematical finance with arbitrage-free
paradigm, pricing non-defaultable bonds is made to correspond to specifying a spot
interest rate such as CIR (Cox-Ingersoll-Ross) model or forward interest rate model
such as HIM (Heath-Jarrow-Morton) model. However, the model is inevitably diffusion
(Markovian) model though actual interest rate processes in practice move with business
cycles, which are not Markovian. It is remarked here that a diffusion interest rate
model typically converges to a Martingale process with a constant mean if it converges.
(see Chung and William (1990) p.97 for Vasicek model). In addition, such a single
interest rate model will be unable to value all the existing GBs at 0 simultaneously with
the correlations being taken into account. This is because it cannot describe differences
of bond prices due to such attributes as coupon rate and maturity. In fact, it is often
observed empirically that bond prices formed in the market are affected by the
difference of these attributes, which is difficult to be taken into account in terms of
Interest rates as they are rather static. In modeling a swap rate process Collin-Dufrense
and Solnik (2001) and Feldhutter and Lando (2007) take the dependence of swap rates
on credit attributes into account and specify a swap rate process as the sum of an
abstract risk-free rate process and a convenience yield process where they are assumed
to be independent. Here the convenience yield is supposed to represent such attributes
as liquidity premium, credit premium (collateral condition), etc. Recent developments in
the area of interest rate models in mathematical finance are found in Brigo and
Mercurio (2006) and Filipovic (2009). While, in Anderson, et al (1996) the derivation
and estimation of yield curves in a traditional or practical approach is well exposited

from a recent perspective.
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