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Cubature formula for some special integral

Masanori Sawa

Graduate School of Information Science, Nagoya University

A main problem of numerical integration is to approximate the integral

/Q F(x)dp.

Here z is an n-dimensional coordinate vector and u is a probabilistic measure on a domain €2
in R™. We assume (2 and p are both invariant under the orthogonal group of degree n. Such
a region and a measure define a spherically symmetric integral; for instance the Gaussian
integral belongs to this class of integral. We shall seek for an approximant by taking a linear
combination of the function values of f at specified points z1, - - - , zy, namely,

N
> wif (). (1)
=1

We call (1) a cubature formula. The values w; are the weights and x; are the points of a
cubature formula. To each formula we assign the set of functions for which it is exact. Most
often this set is the space of all polynomials of degree no more than ¢: In this case a cubature
formula is said to be of degree t. We refer the readers to the comprehensive monograph [6]
for the basic theory of cubature formula.

We require a cubature formula with small number of points to reduce the computational
cost. It is well known that the number of points X in a cubature formula of degree t is
bounded from below as follows:

| X| = dim Py g (2)

Here Py is the space of polynomials of total degree at most £. Researchers in combinatorics and
statistics usually call (2) Fisher-type bound, since it can be obtained essentially by the same
way as in Fisher’s inequality for the number of blocks in BIB designs. Moller [5] improved (2)
for the odd degree case. Namely, he gave the following lower bound for a cubature formula
of degree 2k +1 X:

2dimP; —1 if kiseven and 0 € X,
x| z{ i 3)

2 dim P} otherwise,

where P} is the space of even polynomials or odd polynomials of total degree at most k
according to whether k is even or odd. A cubature formula is minimal if the equality holds
in one of the above bounds.

In the two-dimensional case there are many literatures where minimal formulae were
actually found; see, e.g., [8]. In higher dimensional cases, however, only a few minimal
formulae have been found so far: Those examples are of small degrees as well as in low
dimensional spaces. It seems to be the conventional belief that there exists no minimal
formula of degree t for a d-dimensional spherically symmetric integral for any ¢ > 5 and
d > 3 with some possible exceptional examples. Part of the belief is supported by a famous
theorem of Taylor [7]. Namely, he proved that there exists no minimal formula of even degree
for the uniform measure on the (d — 1)-dimensional unit sphere, using a celebrated theorem



of Bannai and Damerell [1] on the nonexistence of tight spherical designs. There are some
recent papers involving the degree 4,5,7,9 cases, however as far as we know, very little is
known on the existence and nonexistence of minimal formulae of degree at least 10 except for
Taylor’s theorem.

The aim of this talk is to let more and more researchers know the concept of cubature
formula which has been extensively studied in various areas of mathematics; see for example [2,
4]. To do so, we explain basic facts and theories of cubature formula. We also give some new
results on the structure and the existence of minimal formula of degree 4k + 1 for spherically
symmetric integral.

Theorem 1 (Hirao-Nozaki-S.-Vatchev, 2010). Let d, k be positive integers such that & > 2
and d > [(4k?> — 4k + 3 + (2k — 1)v/4k2 + 12k + 1)/2]. Assume there exists a d-dimensional
minimal formula of degree 4k + 1 for spherically symmetric integral with points X. Then
there exists a layer of X over which inner products between pairs of the points are rational
numbers, where a layer of X is the intersection of X and some concentric sphere.

The proof uses a famous theorem in geometry called the Larman-Rogers-Seidel theorem [3]
which mentions the rationality of the inner products of given points.

Theorem 2 (Hirao-Nozaki-S.-Vatchev, 2010). Let k& = 3,4,5,6 and d > 2 be an integer.
Then there exists some spherically symmetric integral which does not admit d-dimensional
minimal formula of degree 4k + 1.

References

[1] BANNAIL, E1., DAMERELL, R. M.: Tight spherical designs, II. J. London Math. Soc., 21,
13-30 (1980).

[2] ConN H., KUuMAR, A.: Universally optimal distribution of points on spheres. J. Amer.
Math. Soc., 20, 99-148 (2007).

[3] LARMAN, D. G., RoGers, C. A., SEIDEL, J. J.: On two-distance sets in Fuclidean
space. Bull. London Math. Soc., 9, 261-267 (1977).

[4] Lyons, L., VICTOIR, V.: Cubature on Wiener space, Stochastic analysis with appli-
cations mathematical finance. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460,
169-198 (2004).

[5]) MOLLER, H. M.: Lower bounds for the number of nodes in cubature formulae. Nu-
merische Integration (Tagung, Math. Forschungsinst., Oberwolfach, 1978), pp. 221-230,
Internat. Ser. Numer. Math., 45, Birkhduser, Basel-Boston, Mass., 1979.

[6] SOBOLEV, S. L., VASKEVICH, V. L.: The Theory of Cubature Formulas. Mathematics
and its Applications, 415. Kluwer Academic Publishers Group, Dordrecht, 1997.

[7] TAYLOR, M.: Cubature for the sphere and the discrete spherical harmonic transform.
SIAM J. Numer. Anal., 32, 667670 (1995).

[8] Xu, Y.: Minimal cubature formulae for a family of radial weight functions. Adv. Comput.
Math., 8, 367-380 (1998).



On minimal cubature formulas for circularly symmetric integrals

Yl BAREREGEEWBIAVITERE PR Rl
Tt BRYR AR A R B IR

Q% R? EOMEEAZ LR, w % Q ETERI N BEAL L BEABEE L, 55

/ Folixlhix, V() = [ w(lxl)ix

REZD, 0K RRICE, R Lo A ARSI e X7 0B oY a C B AR
(1 — |Ix|))'/? & & 9 el Hatdn BB b0nEGENS. X 2 R? LOHR
£E5, V&2 X LOIEEREE T%. t RETOEREDLIHK fIcx LT,

=D Af(x)
xeX
DR ViDL E, HAMNZHES (X, \) 1Z T ITHT % t KD cubature formula (LA, CF & 4)
Z$EWwY), CF I TBUEMITPHEBGRMZ 13 Lo L 24 C ogTicniTns, FH
BWET — < & U CHRERTERREREE, $22050ta E0H 5, T b FEMBEITEEAR
(72 b DTdH %, Tchakaloff (1957) IF M DMHBAI T K THIUL CF IIHFET 5 2 2R L 7.
F 72 CF BHAET % 72 D DR DB D T HIC O W TUIROREINWEHIT 2 F s e Tw %

EI 1 (Radon (1949), Moller (1979)). (X, \) 3T IZWT 2 t XD CF %72 T 7% 513,
1
sle+1)(e+2) t=2eDt &,
‘X‘Z{;(eﬂ)(em)ﬂeglj t=2 11Dk, M)
FoFHEHKIC B W TETZEKT 5 CF 2/ (minimal) TH 2 &9,
RO T 120 LT/ CF SFICHET 2 LIRS 2w, L L A2, Xulckh X
D & 9 %/ CF Z o335 2 6.
I 2 ([4]). BB e % DORET 5. C0L X, ke A znZR
2 _
Q= {x e R1< x| < oo}, wi(flaf) = Y1

(|2t
THBHRETITHNL T, 2e — 1,2e XD/ CF BHFHET 5.

COEMEZT, WA ED X I BRETDEAN CF 22002 R L7zw». THUERXTE

iﬂa@‘% Euclidean tight design D778 E L T Z %5 2 L bHIK S HAMNZHRES (X))

LT, B EAE (x| R > Re > ...R, >0} §5%. S, = {x e R?| x> = R},
Xi=XNS8, A=Y ex, Ax) £F2., ZOLE tRETOEBDOLHA [ XL T,

ZA / Fx)dpi(x) = ) Ax
xeX
VIR LD F, BAMN ZHRES (X, ) %2 Euclidean ¢- design TH2EV). I oITHDME
2% (1) @%%‘%%)ﬁ'ﬁ‘ % Euclidean design % tight TdH 5% &> 9.
57 T IW2R9 % t XD CF 1 Euclidean t-design TH 5 Z EDBHISGNTW S, I HIHEED
WXL “C Euclidean tight t-design I3 \CfFET % (Bajnok(2005)). L723> T, ED K I %
?i: Lﬂb’(ﬂ“d\ CF DMET 200 L 72 5



fElRE. (X )\) % Euclidean tight t-design & L, Z 2 & 2 FINFEZFFOBD L T5. DL &,
(X, \) 3T I2xd % ¢t RO/ CF “C&')%i?)?

41z Z ofEIZHR LT, Euclidean tight design % %9 miid p D H 2 IEL A LICHE
I s 2L ([1]) & Cools-Schmid(1993) TOFEHD 74 77 Z2flAacGbE 2 2 itk D, k)
CF MRS % 7o O DB 2 EZ L HADKRB I ROZM & L CTfR7z. AT, D791
A AETIENT Dt =4k + 3 DEHIZOVTHEZNBT 5.

EE 3. ([3)). Li(t) 289 A =% j D kX Laguerre %R & T2, #7 ARGICHT 5 4k + 3
RDENCF DBMFEL, 9 2ZD CF DRI k+ 1O RICiEI NS LIRETS. ZDLE,
XD (i), (ii) 23D 32D,

(i) & 5FB 1,90 DFFAEL T LY, | (1) KD X 9 RS 5

(ﬁﬂﬁﬁ%xﬁﬁ%)+%ﬁ”%)+vﬁﬁ%9 k=2j D&,
J
1

iy (D50 + L P 0) (BP0 + LY P 0) k=2 +10L 3.

J+1

(i) (R, Ripr} 1B L0, (1) DBIIEOTH .

FME () &0, L), (1) £ 2 DRI NI LIHADE THHADREZ KT 2 2 Lick ViR
/INCF DFEMZHIET 2 2 L8 TES, 55 (1) 23D 322 kot L TEAF (i) 28
THZEICED, /NCF OFEMEZHEZ L3 TE 5,

A AR LT, A IFRDE/N CF DI T 2 k%2157,

EE 4 (2, 3]). A7 AETICNT % t ROF/D CF TR [t/4] + 1 HOM RICREI NS %6
X, t<5TH5%.

References

[1] BaNNAIL, E1., BANNAL, ETSU., HIRAO, M., SAWA. M.: Cubature formulas in numerical
analysis and Euclidean tight designs, European J. Combin. 31, 423-442 (2010).

[2] BANNAIL Er., BANNAIL ETsvu., HIRAO, M., SAWA. M.: On the non-existence of minimal

cubature formulas for Gaussmn measure on R? of degree t supported by [ | + 1 circles,
submitted to European J. Combin..

[3] HIRAO, M., SAawA, M.: On minimal cubature formulae of odd degrees for circularly
symmetric integrals, to appear in Adv. Geom..

[4] Xu, Y.: Minimal cubature formulae for a family of radial weight functions, Adv. Comput.
Math. 8, 367-380 (1998).



gogdooooooobbobbbuoooog
oooooobooooooobooon
gbooooobooog

ubodg,ggbogbbaobogbobobobogboobobooboobob.oobobooboboa
gboooboobobodbmbOOo0booobobooboobobboboobobboobooboooon
gbooo,000boooobobooobooboooobooboooooboon.

Definition 1 (000D0O00O0O0O) XOO (N,k,d)OODODOODDOUOOOOD NOODO
apa1ag * AN —1 a; = AN +i, CLjGX

oooooooo kO0ooooo
C .= {aiai+1ai+2---ai+k,1|i S {0,1,2,"' ,N— 1}}

gboooboooboooooobon

d:= i kf(s(- ) 000 6,y ={ & @7V
= 0§521§an1 vars Ajt5y At T,Y) = 0 =y

obooobOobooooobooon.

Definition 2 (MO0) F, 00 n00 MOOODOOOOODOO
) =t"+an at" "+ Fart +ag
ooooboooboobooo
Tpti + Qn—1Tpti—1 + -+ agz; =0
000000000 ¢"—1000 (x,) =xoz122--- 000,
MOOOOOO¢"—-1000000 000000000000 1000000 "-1,n,)0000000
00000,000 d000000000 s00000000 n+s000000, (¢"—1,n+s,d 00000

gooooob.0o0bobbO0 sdd=3000000000000O0ODOOOODO
m0O000000000 n+s00,

agp a1 An—1 1 0 0

0 Qg ajq Ap—1 1 0
A =

0 0 ao a1 Ap—1 1

DDDDDAm:ODDDDDODDDDDDI:ID[ID[Ia:DD[ID[InD.dZ?)[I[IDEIDDDDDD AOQOOO

—1
D0000000000000000. 0000000000004 - 0000000s000000000
q" -1
D0n+s=-—-0000000.
n
—1
Definition 3 (0000000000) s000000000000000F, 0000 2 0ooooooo

Ub sboobooboobobobooobboobooooboobobooobosooboobobobobo.oooon

(.’E1$2 .. .xs) = ]g(xle .. 'xs)

00o000U00oUo00o0oDo0000000,0000 000 200000000,0000000000 20
goooooooo

Theorem 1 f(z) =2"+a,12" '+ +az+a 0 F,0000000000000000000000OO
0.00 f(x)00 MOOOOUOODO@@"-1,n+s,3)00000000000.



Theorem 2 (0000000000 O00ODO) F, 00 s00000000000O0O00ODOO

11

(¢}) =
qs—l

googd.

Conjecture 1 F,(¢ >3)000000000000000000000000O0O00OO0O0OO0OOO0OO
goo

gboooboobooobobooboobooboo

, m_
-1 q 1

q—1 yq 9~

Conjecture 2 Conjecture; 00O D0 OO0 ™ —-1,3 0000000 OODOOO0OoOO

FQDDDDDDDDDDDDDD(22n*”*1—1,2”—2,3)DDDDDDDDDDDDDDDDDDDDDD
F;003004000000000000000DO00O00DOOLOOODOOOODOODOOOOODOOO
uboobodoooogbgoooogd

30 (1000) |40 3600)
ProjectiveDeBruijn 144 6510819
000 (Uooon) (144) (2000)
oooooood 12 65
oooooooo 0 29
oooooood
£00000000 39366 1.00 x 1017
oooooooo 2640 1.19 x 1015

300 Projective DeBruiin 0000000000000, Conjecturel D0 O0O0O0OOOOOO0O0ODO40
U00o0booo0o0oboobo0obOo0obOoboboOobOoddProjective DeBruijn 0000000 OOOODOOO
gboboobobooboobooooboobooooona

F:O0 360000000000
F:O0 3600000000

36 1
= ¢(32 335)/36 =0.00399 - - -

29
(0D0O000)/(Projective DeBruijn 0000000000 ):m =0.0145

OO00000Projective DeBruijn 0 0 00000000000 O0OCOO0OO0OOO0OO0OOOOOOOCOOOOOOO
O 0O Projective DeBruijn 0 0000000000000 O0D0OO0O0OO0ODO0OO0OOODOOOOODOOOOODOO
OO00000000Projective DeBruiin 0 0000000000000 0O0OODOOO

F,O0n000000000O0
F,O0nO00000000

(F, O s 00 Projective DeBruijn 00000 ) x

n
_ ¢(q )/n7 000 n:q:ll
(g—1)gnt e
goooooobooooooon,eg=30 30 (s:3,n:10)DDDDDDDDDDDDDDDDD,DDDD

Ug¢>30000000000000000C

— S

Theorem 3 00000000 O00DOOOOO0DOODOO0 Fs00000000O0DOOOOODOOOOODOO

obooobOoooooon 19204002000 000000000DO000O000O00OO20740051 00000000000
gooobooboooobobooooobooooon

oood

[1] Mariko Hagita, Makoto Matsumoto, Fumio Natsu, Yuki Ohtsuka: ”Error Correcting Sequence and Projective
De Bruijn Graph”, Graphs and Combinatorics(2008)24:185-194



Optimal Conflict Avoiding Codes of Weight three
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A conflict-avoiding code (CAC) of length n and weight k is defined as a set C
{0,1}" of binary vectors, called codewords, all of Hamming weight k such that the
distance of arbitrary cyclic shifts of two distinct codewords in C is at least 2k - 2.

We denote the class of all the CACs of length n and weight k by CAC(n, k). Note that
acode C & CAC(n, k) can be viewed as an (n, k, 1) optical orthogonal code without
the autocorrelation property.

A code of maximum size (maximum number of codewords) is said to be optimal.
We use M(n) = M(n,3) to denote the maximum size of a CAC of length n and weight
3. The following results are known so far.

Theorem 1 (Levenshtein and Tonchev, 2005)
If n=2 (mod 4), then M(n) = (n-2)/4. Furthermore, the optimal code obtained is
an equi-difference (centered) code.

Theorem 2 (Jimbo et al., IEEE T. Information Theory 2007)
Let n = 16m + 8. The maximum size M(n) of a code C &CAC(n) is (7n-8)/32 if
m =1 (mod 2); (7n-24)/32 if m = 0,2 (mod 6) and (7n+8)/32 if m = 4 (mod 6).

Theorem 3 (Fu, Mishima and Uruno, DCC 2009)

The maximum size M(n) = M(16m) of a code in CAC(n) is M(n) =7n/32ifm=0
(mod 2); (7n-16)/32 if m =1, 5 (mod 6); and (7n+16)/32 if m = 3 (mod 6), with the
exceptions M(48) =10 and M (64) = 13.

Theorem 4 (Fu, Lin and Mishima, IEEE T. Information Theory 2010)

The maximum size M(n) = M(8n+4) of a code in CAC(n) is M(n) = (7n+4)/32 if
m =0 (mod 4); (7n+12)/32 if m= 1 (mod 12); (7n-12)/32 if m = 2,6 (mod 12);
(7n-4)/32 if m = 3 (mod 4); (7n-20)/32 if m=5,9 (mod 12) and (7n+20)/32 if m= 10
(mod 12).



Based on the above four theorems optimal conflict-avoiding codes of even length
and weight 3 have been constructed successfully. So, it is left to consider the case
when n is odd. In the direction of constructing these codes the following results are
obtained though there is a long way to go.

Theorem 5 Let G¢(n) denote the graph obtained from the set of differences {1, 2, ...,
(n-1)/2} with the edges correspond to centered codewords. Then M(n) = [(n-1)/4] if G
contains at most one odd cycle.

Theorem 6 Let n = p" where p is not a Wieferich prime. Then the maximum size of a
conflict-avoiding code of length nis (n — 1 —r-O(p))/2 where O(p) is the number of
odd cycles in G¢(n).

For general n, we can also obtain a formula by using the principle of inclusion and
exclusion. But, it depends on the number of odd cycles in G¢(p) where p is an odd
prime.
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Balanced (C5, C2)-Foil Designs and Related Designs

Department of Informatics, Kinki University Ushio, Kazuhiko

In graph theory, the decomposition problem of graphs is a very important topic. Various type of
decompositions of many graphs can be seen in the literature of gaph theory. This paper gives balanced
(Cs, C12)-foil designs, balanced Cj7-foil designs, balanced (Ctg, Co4)-foil designs, and balanced Csy-
foil designs.

1. Balanced (C5, C}2)-Foil Designs

Let K, denote the complete graph of n vertices. Let C5 and Cio be the 5-cycle and the 12-cycle,
respectively. The (Cs, Ci2)-2t-foil is a graph of ¢ edge-disjoint C5’s and ¢ edge-disjoint C13’s with
a common vertex and the common vertex is called the center of the (Cs,Ci2)-2t-foil. When K,
is decomposed into edge-disjoint sum of (Cy, C12)-2t-foils, we say that K, has a (Cs,Ci2)-2t-foil
decomposition. Moreover, when every vertex of K, appears in the same number of (C5, C12)-2t-foils,
we say that K, has a balanced (Cs, C12)-2t-foil decomposition and this number is called the replication
number. This decomposition is to be known as a balanced (Cs, C12)-2t-foil design.

Theorem 1. K, has a balanced (Cs, C12)-2t-foil decomposition if and only if n =1 (mod 34t).
Example 1.1. Balanced (C5, C12)-2-foil decomposition of Kjs.
{(35,1,16,32,14),(35,5,8,18,26,13,20,11,23,21,10,4)}. (17 edges, 17 all lengths)

This starter comprises a balanced (C5, Ci2)-2-foil decomposition of Kjss.

Example 1.2. Balanced (Cs, C12)-4-foil decomposition of Kgy.

{(69,1, 30, 62,28), (69,9, 14, 34,49,24,37,61,43,40,18,7)} U

{(69,2,32,63,27), (69, 10, 16, 35,51, 25, 39,22,45,41,20,8)}. (34 edges, 34 all lengths)

This starter comprises a balanced (Cs, C12)-4-foil decomposition of Kgg.

2. Balanced C;7-Foil Designs

Let K, denote the complete graph of n vertices. Let Cy7 be the 17-cycle. The Cy7-t-foil is a graph of ¢
edge-disjoint C7’s with a common vertex and the common vertex is called the center of the C7-t-foil.
When K, is decomposed into edge-disjoint sum of Cj7-t-foils, it is called that K, has a Ci7-t-foil
decomposition. Moreover, when every vertex of K, appears in the same number of Cy;-t-foils, it
is called that K, has a balanced Cy7-t-foil decomposition and this number is called the replication
number. This decomposition is to be known as a balanced Cy7-t-foil design.

Theorem 2. K, has a balanced C;7-t-foil decomposition if and only if n =1 (mod 34t).
Example 2.1. Balanced C;7-decomposition of Kjs.

{(35,1,16,32,14,19,5,8, 18,26, 13,20,11,23,21,10,4)}. (17 edges, 17 all lengths)

This stater comprises a balanced C;7-decomposition of Kjs.

Example 2.2. Balanced (7-2-foil decomposition of Kgg.

{(69,2,32,63,27,36,9, 14, 34,49, 24, 37,61,43, 40, 18,7),

(69,1, 30,62,28,38,10, 16, 35,51, 25,39,22,45,41,20,8)}. (34 edges, 34 all lengths)

This stater comprises a balanced C77-2-foil decomposition of Kgyg.

3. Balanced (Cg, C24)-Foil Designs

Let K,, denote the complete graph of n vertices. Let Cy and Cay be the 10-cycle and the 24-cycle,
respectively. The (Chg, Ca4)-2t-foil is a graph of ¢ edge-disjoint C1g’s and ¢ edge-disjoint Cay’s with
a common vertex and the common vertex is called the center of the (Cho, Caq)-2t-foil. When K,



is decomposed into edge-disjoint sum of (Cyg, Cag)-2t-foils, we say that K, has a (Cig, Caq)-2t-foil
decomposition. Moreover, when every vertex of K, appears in the same number of (Cig, Co4)-2t-
foils, we say that K, has a balanced (Cio, Caq)-2t-foil decomposition and this number is called the
replication number. This decomposition is to be known as a balanced (C1g, Caq)-2t-foil design.
Theorem 3. K, has a balanced (Cg, Ca4)-2t-foil decomposition if and only if n =1 (mod 68t).
Example 3.1. Balanced (C}g, Cy4)-2-foil decomposition of Kgg.

{(69,1, 30, 62,28, 55,27, 63, 32, 2),

(69,9,14,34,49,24,37,61,43,40,18,7,15,8, 20,41, 45, 22, 39, 25,51, 35,16, 10) }.

(34 edges, 34 all lengths)

This starter comprises a balanced (C1g, C4)-2-foil decomposition of Kgg.

Example 3.2. Balanced (C}y, Cy4)-4-foil decomposition of Kj37.

{(137,1,58,122,56, 111, 55,123, 60, 2), (137, 3,62, 124,54, 107,53,125,64,4)} U

{(137,17,26, 66, 95,46,71,119, 83,78, 34, 13,27, 14, 36,79, 85,120, 73,47,97,67, 28, 18),

(137,19, 30, 68,99, 48, 75,121, 87, 80, 38, 15, 31, 16, 40, 81, 89, 44, 77,49, 101, 69, 32, 20) }.

(68 edges, 68 all lengths)

This starter comprises a balanced (C1g, C4)-4-foil decomposition of Kj37.

4. Balanced C34-Foil Designs

Let K, denote the complete graph of n vertices. Let Csq be the 34-cycle. The Csy-t-foil is a graph of ¢
edge-disjoint Cs4’s with a common vertex and the common vertex is called the center of the Cs4-t-foil.
When K, is decomposed into edge-disjoint sum of Cs4-t-foils, it is called that K, has a Cs4-t-foil
decomposition. Moreover, when every vertex of K, appears in the same number of Cs34-t-foils, it
is called that K, has a balanced Csq-t-foil decomposition and this number is called the replication
number. This decomposition is to be known as a balanced Csy-t-foil design.

Theorem 4. K, has a balanced Cs4-t-foil decomposition if and only if n =1 (mod 68t).
Example 4.1. Balanced C34-decomposition of Kgg.

{(69,2,32,63,27,36,9,14, 34,49, 24, 37,61, 43,40, 18,7, 15, 8,20, 41, 45,22, 39, 25, 51, 35, 16, 10,
38,28,62,30,1)}. (34 edges, 34 all lengths)

This stater comprises a balanced Cs4-decomposition of Kgg.

Example 4.2. Balanced C34-2-foil decomposition of Kj37.

{(137,4,64,125,53,70,17, 26,66, 95,46, 71,119, 83,78, 34, 13,27, 14, 36, 79, 85, 120, 73, 47,97, 67,
28,18,72,54,124,62, 3),

(137,2,60,123,55,74, 19, 30,68,99,48, 75,121, 87, 80, 38, 15, 31, 16, 40, 81, 89, 44, 77,49, 101, 69,
32,20,76,56,122,58,1)}. (68 edges, 68 all lengths)

This stater comprises a balanced Cs4-2-foil decomposition of Ky37.
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Recursive constructions of t-SEEDs related to
quantum jump codes
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Graduate School of Information Science, Nagoya University

A new class of combinatorial design, called a t-SEED, was introduced
by Beth et al. (2003). A t-SEED has close relation with ¢-error correcting

quantum jump code. For an n-set V and B ¢ (Z) (t=1,---,m), asystem
(Vs B(l),B(Q), e ,B(m)) is called a t-spontaneous emission error design,

denoted by t-(n, k;m) SEED if the following conditions are satisfied:
(i) For any i # j, BW nBY) =0,

(ii) For any i, u <t,T € (Z) = pr holds,

A1
LB
where Ay = |{T C B|B € BW}|.
A t-(n, k, \) design is a pair (V, B), where V' is an n-set of points and B is
a collection of k-tuple of V' (blocks), such that every t-tuple of V' is contained
in exactly A blocks. A large set of t-designs, denoted by LS\(t, k,n), is a
partition of the complete design (i.e. the set of all k-subsets of V') into
disjoint ¢-(n, k, \) designs.
It is clear that the definition of ¢t-SEED is less restrictive than that of
t-design by allowing a local parameter pr rather than the usual A;. If Ap are
constant not depending on 7', then the ¢t~-SEED is a collection of ¢-designs.

Example 1 Any ¢-(n, k, \) design (V, B) can be seen as a t-(n, k; 1) SEED.

n—t
Example 2 If alarge set LS\ (¢, k, n) exists, then there exists a t-(n, k; (k;t) )

SEED.

A t-(n,k;m) SEED (V; BMH B3 ... ,B(m)) is said to be s-resolvable if
each design B is partitioned into h subfamilies B&Y, B6:2) ... BGh) and
a (V; B B2 .. Bmh)Y forms an s-(n, k; mh) SEED.

*Email: lin@jim.math.cm.is.nagoya-u.ac.jp




A k x A\¢! array of ¢ symbols is called an orthogonal array OAy(t,k,q)
if every one of the possible ¢’ ordered t-tuples of symbols occurs in exactly
A columns in any ¢ rows of the array. When A = 1, we write OA(t, k, q).
A large set of orthogonal arrays LOAy(t,k,q) is a collection {A,},cr of
OA\(t, k,q)s such that every possible k-tuple of symbols occurs in exactly
one of the OA’s in the collection. We write LOA(t, k,q) when A = 1. Note
that |R| = ¢*~'. The following is known (see, for example, Raghavarao [2]).

Lemma 1 For any prime power ¢, there exists a LOA(t, k, q).

Now we give some recursive constructions of t--SEEDs that we found.

Theorem 1 (Direct product construction) If there are a t-(n, k;m) SEED
and a t-(n’, k’;m’) SEED, then there is a t-(nn/, kk'; mm') SEED.

Theorem 2 (LOA construction) If there are a t-(n,k;m) SEED and an
LOA(t, k,q), then there is a t-(ng, k; mg*~t) SEED.

Theorem 3 If there is a | £ |-resolvable ¢-(n, k;m) SEED, then there exists
a | £]-resolvable t-(nv, kk'; h¥=1m*") SEED for any v, k' > 2, where h is the
number of subfamilies B(+7) in B®),

Theorem 4 If there are a | £ |-resolvable ¢-(n, k;m) SEED and an LOA(t, k', q),
then there is a | £ |-resolvable t-(nv, kk'; ¢ ~th*~'m*") SEED for any v > 2,
where h is the number of subfamilies B7) in B®,

In this report, we found several recursive constructions. By applying
our constructions to known large set of ¢-designs, we obtain many series of
t-SEEDs. Beth et al. gave an upper bound for m of a t-(n, k;m) SEED. It
is obvious that a large set LS)(t,k,n) attain the upper bound. But even
now, we cannot find a t-SEED attaining the upper bound except for a large
set of t-designs.
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000 0 (0000000000),00 00 (00000000000)
00000 (00000),00 00 (0000000000)

1. Preliminary

It is well known that the set of ¢-flats in AG(n,q) yields a 2-design for a prime power ¢ and a
positive integer n. Especially, let V' = GF(¢™) and B be the set of planes (2-flats) of AG(n,q). Then
(V.B) is a 2-(¢",¢%, (¢" ' —1)/(g — 1)) design.

Let 0, : ¢ — ax for a € GF(¢")* and G = (0,) for a primitive element o of GF(¢™). Moreover,
let T={m | 7 :2+— x+bbe GF(¢")} be the group of translations and H = G x T = {10, : ¢ —
ar+b| o, € G,m, € T}. Then B is decomposed into block orbits O; by the action of H and the
following decomposition of the design is known.

Lemma 1 The 2-design formed by the set of planes in AG(n,q) is decomposed into

n—1_

(1) qq2_11 disjoint 2-(v = q", k = ¢*,\ = q+ 1) designs (V,0;) fori=1,2,..., qz;izl when n is
odd.

n—1_ n

(i) qulq disjoint 2-(v = ¢", k = ¢*>, X = q+ 1) designs (V,0;) for i = 172,...7‘1(1;;'1 and a

single 2-(v = ¢, k = ¢®>, A = 1) design (V,Op) when n is even.

A set £ of lines in PG(n — 1,q) is called an s-spread if each point of PG(n — 1,q) is covered
exactly s times by lines in £. A 1-spread is simply called a spread. A 2-design (V, O;) of planes in
AG(n, ¢) is equivalent to an s-spread £; of lines in PG(n — 1, ¢), where s = 1 for £y and s = ¢+ 1
for £;, j = 1,2,.... Here, a block B; in O; including 0 and 1 is called a baseblock of O;. For a
baseblock B; € O;, BIf = {B;l | h € H} = O; holds. Similarly, a line (block) L; in £; such that L;
includes 1 is called a baseblock of L; and for a baseblock L; € L;, L? ={Lj| g€ G} = L; holds.

For e|q::11 and § = a°, let G. = (0g) and H. = G, x T. In this report, we consider the
case that the orbits of H, form subdesigns. That is, we try to devide a (¢ + 1)-spread £; into
s'-spreads with s’ | ¢ + 1 by the action of G.. For this purpose, ged(e,q + 1) > 1 must hold. Since

ged(g+1, qqn:f) =¢g+1, or 1 according as n is even or odd, we assume that n is even. Munemasa [1]

counted the number of spreads for ¢ = 2 by examining the orbit structure of PG(2n — 1,2) derived
by the action of G, for e = 3.

Lemma 2 (Munemasa [1]) The number of lines in PG(2n — 1,2) whose orbit under the subgroup
G3 in the Singer group G is a spead is given by
(2271 _ 1)(277, + (_1)n+1)2
27 '

92n—1_o

In general, it follows from Lemma 1 that the number of full orbits is . Among these, there
are 5-{(2" + (—1)"™)?} — 1 p,, orbits which can be partitioned into three spreads, where p, = 0 or
1 depending on n. Hence, we obtain the following:

Corollary 3 The 3-design formed by the set of 2-flats in AG(2n,2) is decomposed into
227171 —92 (Qn + (71)n+1)2 N @

3 27 3
2-(22",4,3) designs and
(2" + (=1)" )2
9
2-(22",4,1) designs, where p, = 0 if n = 0 (mod 3), and p, = 1 otherwise. These designs are
disjoint.

_pn+1



2. Decomposition of a 2-(3**,9,4) design into subdesigns

Now, we consider the decomposition of the 2-design derived from planes of AG(2n,3). In this
case, each block orbit O; of planes in AG(2n, 3) contains a baseblock of form

B={0,1,z,z+ 1,z —-1,-1,—z,—z —1,—z + 1},

which corresponds to a line
L={l,z,z2+1,z—1}
in PG(2n — 1,3).
By letting C§ = (0) and Cf = ol C§, we define the three sets M7, Ma, M) of quadruples of form
{1,z,2 + 1,2 — 1} as follows:

(i) M to be the set of quadruples such that {1,z,2+ 1,2 — 1} is a complete system of represen-
tatives for the cyclotomic cosets C;L, j=0,1,23.

il M2 to be the set of quadruples such that two of 1,2,z + 1,2 — 1 are contained in 02 and the
q p ] 9 0
other two are in C12

(iii) ./\/ll2 to be the set of quadruples such that two of 1,2,z + 1,z — 1 are contained in Cj and the
other two are in C3.

Lemma 4 (i) If a line L is a quadruple in My, then L = L is decomposed into four spreads
LG4, [7eGa | [72G1 and L7aC4.

(ii) If a line L is a quadruple in Ms, then L is decomposed into two 2-spreads L2 and LGz,

(iii) If a line L is a quadruple in M}, then L is decomposed into two 2-spreads L% U L7~G4 and
2 3
LoaGa y [oaGa,

Evaluation of M|, |M3| and |M}]| can be reduced to calculation problem of Jacobi sums on
two multiplicative characters of F32n, which enables us to establish the following theorem.

Theorem 5 (Main Theorem) The 2-design formed by the set of 2-flats in AG(2n,3) is decom-
posed into ((32"~1 —3)/8 — Ky) 2-(3%,9,4) designs, 2(Ky — K1) 2-(3%",9,2) designs and (4K +1)
2-(32",9,1) designs, where

Ky = %(32” Ty % {617 +23" + (-1 - 2) (1 - i2vD)" + (1 +12v2)") } - iun,
Ky = %(32” T1) - ﬁlg {B(=1)" =23 + (-1 = 2) (1 - 2v2)" + (1 +2v2)") } - iun
with

[0, ifn=0 (mod4), b 0, ifn is even,
Hn = 1, otherwise, "7 1, ifn s odd.

These designs are disjoint.
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1 Introduction. Let G be a finite abelian group and F = {B;|1 ¢ b} be a collection of
subsets of G. Define AB; := {ab~!|a,b € B;;a # b} for each B; and set K = {|B;||1 i b}.
We say that F is a (G, N, K, i, ) divisible di erence family (simply DDF) if there exist ,u €N
and N @G such that the list U?:l AB; contains every element of G \ N exactly times and
contains every element of N \ {15} exactly p times. If the size of each B; is constant, say k, it
is denoted as (G, N,k,u, )-DDF. If y = | the concept of a (G, N, K, u, )-DDF coincides with
that of an ordinary (G, K, ) di erence family (simply DF).

In [3], the following construction of di erence families was given.

Proposition 1.1. Let F, be the finite field with g elements and N denote the set of non-zero
squares in F,. Define By := (N +1)NN and By := (N 1)NN. Then, F = {Bq, B2} forms an

2 Generalized Szekeres’s construction. The following provides a generalization of Szekeres’s
construction of di erence families.

Proposition 2.1. Let R be a commutative ring with G and H as its additive and unit groups,
respectively, having unity 1 := 1gx. Let N H and let S be a complete system of representatives
for H/N. Furthermore, let A;, 1 i b, be u;-subsets of S. Assume that there is a (G, K, )-DF
F={D;|1 i b}, in which each D; has the form D; = (U,e, *N) U C;, where each C; is a
subset of I := G\ H. For a subgroup L N, assume that F satisfies the following properties:

(i) C; =tC; foranyl i bandte N,
(ii)25:1|Diﬂ(Di t+ )N+ 1) =pu1 foranyt € L\ {1} and = po for anyt € N\ L.

Then, the family F' = {y="(D; 1)NN|1 i byy€ S} forms an (N,L,{ki,|1 i byye
S}7 M1, ”2)_DDF7 where ki,y: ‘(N+y)ﬂD‘+|y_1(C7f l)mN|

We apply generalized Szekeres’s construction to some known series of cyclotomic di erence sets.

Example 2.2. It is known [2] that for the cases when (i) e = 2 and g = 3 (mod 4); (i) e = 4 and
q=1+4t> with t = 1 (mod 2); (iii) e = 8 and ¢ = 9 + 64a®> = 1 + 8* with a = b = 1 (mod 2),
the set E of non-zero eth powers of Fy forms an (Ff, k= (q 1)/e, = (¢ e 1)/e?) difference
set.  Applying generalized Szekeres’s construction to these difference sets as (G,N,Dy,C1) =
(FF, B, E,0), we obtain (i) a (Zig—1ys2:(q¢  3)/4,(q  7)/4)-DF; (ii) a (Z4-1y/1,(q 5)/16,(q
21)/16)-DF; (iii) a (Zg—1yss,(q  9)/64,(q  73)/64)-DF, respectively, where we used the fact
ki, = |(N+y) NN| = . Form (i), we obtain Szekeres’s difference families by noting that
(N+1)NnN)"t= (N 1)nN.

3 Application of generalized Szekeres’s construction to Hadamard difference sets over
GR(4,m). Let GR(p?,m) denote the Galois ring with characteristic p?> and degree m, which is
a Galois extension with degree m of Z/p*Z. The ring R = GR(p?,m) is a local ring having the
unique maximal ideal pR and the residue class field R/pR = {0, ¢, ¢',...,gP" ~2} is isomorphic
to Fpm. We take 7 = {0,¢% ¢",..., 97" ~2} as a set of representatives of R/pR. An arbitrary

element o € R is uniquely written as « = a 4+ pb, a,b € T.

Let A := {Z € Fj.|Trp,, r,(bx) = 0} for b € F3, such that Tr,, /r,(b) = 0 and let D =
{a(1+2b)|a € T\ {0};b € A}. Note that D is a subgroup of order 2~1(2™ 1) of the unit group




R* of R. In [4], it is shown that D forms an (R*,2m=1(2m 1) 2m=1(2m=1 1)) di erence set.
By applying Proposition 2.1 to this Hadamard di erence set as N D and C; = {}, we obtain the
following theorem, see [1] for its proof.

Theorem 3.1. There exists a (Zgm_1y/e X Lgs, {0} x Zgs, K, 2™(2m=2 1), 2m~1(2m=1 1) 2m=2).
DDF for any e|2™ 1 and s m. In particular, if e =1 and s =m 1, it has the parameter
(Zigm _1 X Zigm—1,{0} X Zgm-1,2m~1(2m=L 1) 2m(2m=2 1) 2m-1(em=1 1) 2m=2)

Note that k, = |(N +y) N D| € K for y € S a complete system of representatives for R*/N in
Theorem 3.1 by the construction of Proposition 2.1.

4 Computation of k,’s and Jacobi sums. Any multiplicative character ¢ of GR(p*,m)*
is uniquely written as ¢ = ¥pir for some Yp and 7, which are multiplicative character of
GR(p*,m) trivial on 7 and P, respectively. Put a = a(1 + pb) € GR(p?,m)*. Obviously, the
multiplicative character ¥p = p, for £ € T of GR(p?,m) is given by ¥pe(a) = ¥pe(1 + pb) =
XZ(E), where x7 is an additive character of Fpm. Also, the multiplicative character ¢r = ¢ ; for
0 ¢ p™ 1of GR(p* m) is given by ¢ri(a) = ¢r,(a) = ;(@), where ; is a multiplicative
character of F,m. We extend the domain of ¢ to all elements of GR(p*,m) as ¢ps(a) = 0 for
any o € pR and for any ¢ € 7 and as ¢ (o) = 0 for any o € pR and for any 1 ¢ p™ 1
and Yro(a) = 1 for any o € pR. The sum J(t)1,v2) := > g ¥1(a)b2(1 ) for multiplicative
characters ¢; and 19 is called a Jacobi sum of GR(p?,m).

Proposition 4.1. Let p = 2 and let Y1 = Yp o, Y1rm, and Y2 = Yp o, V1m,- If YPe, Ype,, and

m—1

Yp o, Ypa, are non-trivial, it holds that J (11, 2) = 2”)@((&62)2 ) ,_nll (1+ 6;162) ;é (61551 +1).

Using Proposition 4.1, we obtain the following theorem.

Theorem 4.2. Assume that m  s|m and b satisfies Trg,,. /v, _. (b)=0. Let N=M x L R*
for the multiplicative subgroup M of index e of T\ {0} and L = {T € Fam | Trg,,. /r,, . (br) = 0}.
Set y=' :=g(1+2h) and z :=ged (e, (2™ 1)/(2™~*  1)). Then, if a(:= Trp,, &,,,_. (bh)) =0,

L:(?m L e+ L:(2(2’”_5 1) e) ifg is eth power;

ky = L:(zm 1)+ L;Z(Qm_s 1) if g is zth power but not eth power;
%;I(Qm 1) if g is not zth power.
Ifa#0,
¥(2m 1 e+ 25:2( 1 xz(@ + Zz/f_zfl Ju) if g is eth power;
k=) T DHEECL @+ DT e @) i g s 2th power

but not eth power;
25: (2m 1) if g is not zth power,

where Jy =3 ger, . \(0.1) X/T(M)Uuz(zm—s—1)/e(J)77;zl(2mfs—1)/e(d +1) and nzgm-s_1)/e s
a multiplicative character of order e/z of Fom—s. In particular, if Trpym /Fy (bh) # 0, |J.|
2(m=s+2)/2 follows for non-trivial Nzu(2m—s—1)/e and it holds that

m-+43s

25 e 42 7M24e) o 2T D 250 )
e e e .
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The Existence of Almost Difference Families
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Abstract.  Almost difference families (ADFs) were introduced by Ding and Yin as a useful generalization
of almost difference sets (ADSs), and a number of infinite classes of almost difference families had
been constructed. In this paper, by using Weil's theorem on character sums estimates and computer

searching, some known results on almost difference families by Ding and Yin are improved.

Given an Abelian group G of order q . Let F={D,,D,,---,D.} be a family of
k-subsets of G . Define the difference list AD;of D; to be the multi-set
{a-b:a,beD, anda=b},

in which each object may occur with a certain multiplicity. The formal sum of the
difference list ADj of Dj is called the difference list of F, and is denoted by AF.

F said to be an almost difference family, or a (q,k,A,t) ~ADF, if some t nonzero

elements of G occur exactly A times each in the difference list AF , while the remaining
q-t-1 nonzero elements of G occur exactly A+1 times each in AF . Furthermore, if

G is a cyclic group of order q, then we call the (q,k,A,t) —ADF cyclic.

Suppose q is aprime power. To construct combinatorial designs in F,, one often needs

to find an element x € F, \{0}, such that some polynomials in F,[x] of degree one or

two satisfying certain conditions. Weil's theorem on character sum estimates is very useful
to do this.

Theorem 1.1. Let w be a multiplicative character of F,of order m>1 and let
fqu[x] be an monic polynomial of positive degree that is not an m -th power of a
polynomial. Let d be the number of distinct roots of f in its splitting field over Fq, then

for every ae Fq , we have

Sy (@ () £ (d-1)g

ceCG .

In order to construct optimal optical orthogonal codes, Chang and Ji (2004) presented the
following result.

Theorem 1.2. Let q be a prime, q=1(mod e)and



q- [SZ: (j(s— r—1)(e— I)H]\/a -5 >0

Then, for any given s —tuple (i,1,,:-,1;)€(1,2,---,e-1)" and any given s —tuple

(C15Cy,775€,) of pairwise distinct elements of F_, there exists an element x € F, such

that x+c, € C; foreach r.

For our purpose, Theorem 1.2. is generalized to the following result.

Theorem 1.3. Let q be a prime, q=1(mod e)and

S s t t S t s l‘

q-[Z( j(r—l)(e—l)wz( j(Zu—l)(e—l)”+ZZ( J( j(r+2u—1)(e—l)””]\/a — st >0
=2 \I u=1\U r=1 u=l \I \ ¥

Fors-tuple (ij,i,,~--,i;)€(1,2,---,e-1)"and t-tuple (h,,h,,~--,h)e(1,2,---,e-1)'

and for any given s -tuple (c,C,, +,¢,) of pairwise distinct elements of F,
((al,bl),(az,bz);--,(at,bt))e(Fq><Fq)t , there exists an element x €F, such that

x+c, e l<r<ys, x*+a,x+b, € G, . Where x* +a,x+4, are irreducible in F,[x]

and pairwise coprime, 1<u </,

By using this bound and computer searching, some results on almost difference families
by Ding and Yin (2008) are improved as follows.

Theorem 1.4. Let q=1(mod8) be a prime and q>9 . Then there exist a cyclic
(4:4,1,(q-1)/2) -ADF in F,.

Theorem 1.5. For each prime q=1l(mod 6) and q>7 , there exists a cyclic
(4,5.3,2(q-1)/3)-ADF in F,.

Theorem 1.6. Let q=I(mod 8) be a prime and q>9 . Then there exist a cyclic
(9,5,1,(q-1)/2) -ADF in F.

[1] Chang, Y., Ji, L., 2004. Optimal (4up, 5, 1) optical orthogonal codes. J. Combin. Des.
12, 346-361.

[2] Ding, C., Yin, J., 2008. Constructions of almost difference families. Discrete Math.
308, 4941-4954.

[3] Wang, X., Wu, D., 2009. The existence of almost difference families, J. Statist. Plann.
Inference 139, 4211-4216.



On the Existence of k-sun Systems

C.-M. Fu, N.-H. Jhuang, Y.-L. Lin and H.-M. Sung
Department of Mathematics, Tamkang University,
Tamsui, Taipei County, Taiwan, R.O.C.

For a graph G, let V(G) be the vertex set of G and E(G) be the edge set of G and
let K, be the complete graph of order n. A k-cycle is a cycle of length &, denoted by CY.
A matching of size k or a k-matching in G is a set of £ mutually non-adjacent edges,
denoted by M. If M covers all vertices of G, then M, is called a perfect matching of
G. A k-sun graph S(CY%) is obtained from C} by adding a pendent edge to each vertex
of Cj. Thus each k-sun graph S(Cj) contains exactly one C and one matching M.

Let G be a simple graph. A decomposition D of G is a collection of edge-disjoint
subgraphs G, G, - - - , G of G such that every edge of G belongs to exactly one G; for
j=1,2---t. Dis called a I'-decomposition of G if each member of D is isomorphic
to I'. A I'-decomposition of G is also called a (G,I')-design. In particular, if G is K,
and I" is C with & > 3 then a (K, Ck)-design is known as a k-cycle system of order n.
If ' is S(Cy) then a (K, S(Ck))-design is called a k-sun system of order n. In 2008,
Anitha and Lekshmi decomposed Ky into & — 1 k-sun graphs and a perfect matching
when £ is odd and k — 2 k-sun graphs, a perfect matching, and a Hamilton cycle when
k is even. This motivates us to study the existence of k-sun systems.

Assume D to be a (K,,G)-design. An automorphism group of D is a group of
permutations on V(K,,) leaving the collection D of G invariant. A (K, G)-design is
said to be cyclic (respectively 1-rotational) if there is an automorphism of order n
(respectively n — 1 with one fixed point). So far, if G is Cy, then there are many
results about cyclic or 1-rotational k-cycle systems. If GG is a graph obtained from C}
by adding m (> 1) distinct pendent edges to the vertices of Cf, denoted by ©,,C} then
Wu and Lu proved the following.

Theorem 1. For any positive integers k and m with k > 3, there exists a cyclic
(Ko(ktm)+1, OmCr)-design. Moreover, if k is even, then there exists a cyclic (Kaop(kim)+1,
O,,Cy)-design for any positive integer p.

Since S(C%) can be viewed as O,Cj, we have

Corollary 2. For any positive integer k > 3, there exists a cyclic k-sun system of
order 4k + 1. Moreover, if k is even, then there exists a cyclic k-sun system of order v
where v =1 (mod 4k).

In order to settle the existence problem of n-sun systems we need the following
lemma (necessary conditions).

Lemma 3. If an k-sun system of order n exists, then n > 2k and 2k| (g)
In 1988, Jian-Xing Yin and Bu-Sheng Gong proved the following result.

Lemma 4. There exists a 3-sun system of order n, if and only if n = 0,1,4,9 (mod
12).



Let G be a simple graph. We shall assume that the vertex set of K,, is Z,, when we
consider cyclic (K, G)-design with the automorphism

m:i—i+1 (modn)orm=(0,1,2,---,n—1)
or Z,—1 U {oo} when we consider 1-rotational (K, G)-design with the automorphism
m:00—00,i—i+1 (modn—1)orm=(0)0,1,2,---,n—2).

We use difference method to obtain k-sun systems of all possible orders for & =
3,4,5,6,10,14 and 2' where t(> 2) is a positive integer. More precisely, we obtain
cyclic k-sun systems of odd order and 1-rotational k-sun systems of even order except
those orders less than 4k.

Theorem 5. [fn =1 (mod 12), then there exists a cyclic 3-sun system of order n. If
n =0 (mod 12), then there exists a 1-rotational 3-sun system of order n.

Next we consider 4-sun systems. By counting the edges, we get that if there exists
a 4-sun system of order n then n = 0, 1 (mod 16). From Corollary 2, we have that if
n =1 (mod 8k), then there exists a cyclic 2k-sun system of order n.

Lemma 6. If n = 0 (mod 16) then there exists a 1-rotational 4-sun system of order
n.

From Lemma 6, we can construct and obtain the following result.

Lemma 7. Let k > 2 be an integer. If v =0 (mod 8k) then there exists a 1-rotational
2k-sun system of order v.

Theorem 8. Let t > 2 be an integer. There exists a 2'-sun system of order v if and
only if v=10,1 (mod 2:2).

Next we can construct cyclic or 1-rotational k-sun systems of order n, for k = 6, 10
and 14.

Lemma 9. If n =9 (mod 24) then there exists a cyclic 6-sun system of order n.

Lemma 10. If n is a positive integer, and v = 16 (mod 24) then there exists a 1-
rotational 6-sun system of order n.

Theorem 11. There exists a cyclic or 1-rotational 6-sun system of order n if and only
ifn=0,1,9,16 (mod 24) except possiblen = 16.

Theorem 12. There exists a cyclic or 1-rotational 10-sun system of order v if and
only if n =0,1,16,25 (mod 40) except possible n = 25.

Theorem 13. There exists a cyclic or 1-rotational 14-sun system of order n if and
only if n =0,8,49 (mod 56) except v = 49.



A counter-example of Delsarte-Seidel’s conjecture
on tight Fuclidean design

Masatake Hirao, Masanori Sawa, Yuanyuan Zhou
Graduate School of Information Science, Nagoya University

A spherical ¢-design is a nite subset X in the unit sphere S% which is used
to approximate the integral of any polynomial f of at most degree t over S by
the average of values of f at X. Generalizing the concept of spherical designs,
Neumaier and Seidel [6] de ned a Euclidean t-design in RI+1.

Let d, t be positive integers, and S? be the sphere with radius r in R+!
whose center is at the origin. A Euclidean t-design is a system of a nite subset
X in R4 and a weight function w on X such that

3 ZweX“Sf“’(w)/meSd frz)d =" wz)f(z) (1)

reR Jsad Tex

holds for every polynomial f of degree at most ¢ over R?T! where R is the set
of the ordinary Euclidean norms of X and is the uniform measure on the unit
sphere S¢. With |R| = p, this system is called a (d + 1)-dimensional Euclidean
t-design on p concentric spheres. In particular, a Euclidean design with R = {1}
and w(x) 1 is a spherical ¢-design.

Euclidean designs always exist if the designs have large number of points.
Thus we are interested in Euclidean designs with smaller number of points. It is
well known [4, 5] that the number of points X in a (d+1)-dimensional Euclidean
t-design on p concentric spheres is bounded from below as follows:

x| Z§(<Lt/2j +dd2(k1)> N <L(t1)/2J +dd2(k1))> @

A Euclidean t-design on p concentric spheres is said to be tight if it attains the
bound (2). In the 2-dimensional case, in nitely many tight Euclidean ¢-designs
have been already found for ¢ and p [1, 4]. However, in higher dimensional cases
(d > 2), little is known on the existence of tight Euclidean designs even for small
values of ¢ and p, though many researchers have tried this problem.

In this talk we present a 4-dimensional tight Euclidean 5-design on 3 con-
centric spheres whose existence was previously unknown. As far as the authors
know, this is the rst and the only known example of tight Euclidean t-designs
with0 ¢ X, t >4, d> 3 and p > 3. In fact all known results of tight Euclidean



designs with 0 ¢ X, t >4, d > 2 and p > 2, are updated since the last survey
paper by Bannai and Bannai [3].

The set of all transpositions of coordinates in R?*! forms a nite group G,
called the Weyl group of type Ay, d > 1. Let o be the involution on R4+!
de ned by 7 = —z and H be the semidirect product of G and (o). Then it is
obvious that H is a subgroup of the Weyl group of type Byi1, say W(Bgt1),
and so the order of H is 2- (d + 1)!. For z € R™! we denote by Orbg(x) the
orbit of x under H, that is, Orby(z) = {«” | 7 € H}.

Theorem 1 There exists a 4-dimensional tight Euclidean 5-design (X, w) on 3
concentric spheres which has the form

> w(@) f(x) =wo 3 F(@) +w 3 f(z)

zeX x€0rb g ((po,p0,P0;P0)) x€0rby ((p1,p1,p1,91))

S ) )

z€O0rbg ((p2,p2,92,92))

where pg, p1, P2, q1, g2, Wo, W1, Wo are positive real numbers such that

_ (V2 — 1)pop1
D2 = —F—
\V/2p5 — 3pi

ng - Sp% > Oa _3171 =dq1,

= (V2 + 1L)pop1 we — 3pi
2 = T T S 0 — )
V2R — 3% 4(7pg — 18pgpt + 15p1)
vy — P w0y — (2p5 — 3p7)?
8(7pg — 18pgpi + 15p1)’ 8(7p8 — 18p3p? + 15p1)
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Few distance sets and a generalization of
Larman-Rogers-Seidel’s theorem

O00oo0oooooooooooooon
Graduate School of Information Sciences, Tohoku University, Japan
Nozaki, Hiroshi

00000000 RIODOOO00O0DODOD S4-'00000000000000s0000000
O00D000X cRYO0sO0000000000000O0OODOO 20000000000000
UsOOobOooooboooo

AX) ={d(z,y) |2,y X,2#y} 0000 d(z,y) 0000000000

O00O00OD|A(X)|=s000 X0 sOOOOOUOOOsO0OOOOOOOODDOOOOOOsOd
ugbbogboboobooboobodb sgbooboobooboboboboobuoobaanda
sdboboooooboooocobooboboooboooobooonoo

Theorem 1 (Bannai-Bannai-Stanton(1983), Delsarte-Goethals-Seidel(1977)). (1) X C R0 s
D0oooooo|x|< (4.

(2) X cS'0s00000000lX|< (") + (Y57).

1000000000000000000000D00000d+ 100 Regular simplex 00 0O
0000000000000 D0000D000000O0O00O00ODOOLisonek(1997)00000R® 0 45
o200000000000000DO0DOO0ObOO0OOO0O0ODODOoDbOObDOObODODODODOoDODbDOO
goboooboooooooboooobooooboboooboooboooboobobooboboOooOoso 30
OO000OoO00oOo0oO0o0ooOoO00DoboO0O0sg200000d=2,6,2200000000000
oboooOobooooboboooooboooobobooooooboooog

My(s)Oresp. M;(s)00 d000000000OOresp. 00000 sO00000O0O00OOO
gboboobobooboobooooboobooooono

d |23 4 5 6 7 8 s |23
Mq(2) |5 6 10 16 27 29 45 My(s) |5 7

S My(3) =12

12
d |2 3 4 5 6 7---21 22 24..-39
M;2) |5 6 10 16 27 %LU 975 A
000000000000000000000000000000000000s=2000000

goboobooobooobobooo200b000b0000o0ObOO00obo0o0ooboooboOoobooaon
OO00O0O0O0O0O0000D0D0D0ODODO Larman-Rogers-Seidel 1 00000000000 0OO

Theorem 2 (Larman-Rogers-Seidel(1977)). X C R0 20000000A4(X) = {a1,a2}(a1 > az)
0000|X|>2d+4000000000 k 2<k<1/2+./d/2)000000a3/a? = (k—1)/k
good

gobooboooboobog sgbooboood

Theorem 3 ([1]). X CR‘0 s0000000A(X) = {a1,as,...,a,} 000 O[X| > 2(471) +

2(**23) 000000000 dC{L,2,...,s}00000

2
1
a? —a?

J=12, s 0 9

oO0oooOo0o00oobo0oUooDooodO0 sbbd00OO0OO0O0ODOOOOD



OO00000D0DO0ODO Johnson scheme 0 Hamming scheme D00 O000000O0DOOCDOOO
gooooooooooooooo

Theorem 3000000000 30000000000000000000000 Mg(3) =120,
M;,(3)=2025000000000 [208000000 3000000 Eg root system 00000
0000000000000 000000000o00220000003000000LeechOOOO
00000 220000000000000000000000O0QOOOOOOOOOOOOOO
goooOoOoOoOOOO0O0OODODOOOOOOO0OO0OO0O00000000000O0OOOOOoOOO™

OO0 200000000 Theorem 300 0000000000000 ODOO0ODOOOOOOO
sO000000000000000000 sO0000000000

Theorem 4 ([3]). X ¢ $¢'0 s0000000000000000000000000 {by,bs,...,bs}
0000000 [[_,(t—b)000000000000 {Gx(*)}0000000 Y, fiGi(t) 00

oooooo
X< > ha
i fi>0

D000A = ("7 - (157,

Theorem 400000000 /00000000000 Theorem 1 (2)0000000000O
O00000000000000000000 Theorem 1 (2)00000000000O0O0OO

OO0 2100000000000 Theorem 40000000000000000O00OOOOOO
gboobOoboooobobooobooboooobobo0oobooboboooooobooon

Theorem 5. Z:={l| f;>0}000X c $*'000 |X|<Y,, 00000 s000000
0.0000004,jez10000,

3 G () =0,

z,yeX

000 kO [i—j|<k<i+j, k=i+j (mod2)000000000000000 (z,y)0000
0oooooooo

Y eyex G({z,y) =00 1<k <t000D0000000 X0O0O0t000000000
00000000000 Theorem 4000000000000000000000000000O0
00000000000000000000000000

00000000000000000000000 20000000000000

Theorem 6. (1) 8 <d <39, d+#2223,263700000d(d+1)/2000 200000000
0000000000

(2) 70028000 200000000000 46700000O.

(1) 00000 0Regular simplex 10 00000000000000000(2)000000 Ey
root system 0 7000 0000000000000000

d=26,3700000000300000000000000000000000000000
0000000 d=260000(351,50,25,4)0 (351,140, 73,44)0 d = 37 0 0 0 0 (703, 72, 36, 4)0
(703,182,81,35) 0 0 0 0 (351,50, 25,4)0 (703,72,36,4) 00000 00000000000000
00000000000000000000000000000000000000000000
0000000000
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Finiteness of distance sets in few dimensional spaces

gbooooOobooooobooboooogooon

d-0000000000 R'0O00D0D0000 X0 k000000000, X 000000000
0000000 (00000000000, 000, AX) = {d@y)|z,y € X,z £y} 000000,
|AX)|=kD00000,X0 k0000000.000 d(z,y)0 z,ye X0000000000000
000.000000000000000000000000,0000000000000000,00
02000000000,00000000000000

00 d000000 A0000000,00000000000000000000,00d0000
0000000,00000000000000000000000.0000,00000000000
0000000,00000000000000000.0000000000000000000000
0,0000000000000000.0

00000000000,0000000000
00 (Erdés and Fishburn, 1996)
0000 k0000 (k>7)000,0000000000000 k00000 LoO0O0ODO0OO. O
00, La = {a(1,0) +b(1/2,/3/2) : a,b € Z}.
00000000,k=5,6,7000000000000.00000,00000000000000
O000000,0000000000000000000000C000O00. 000,00000000
000000000000000000,0000000000000000000. 00,000000
00000000000 «n0000000000000000,0000000000.

00 (Erdés, 1946)
(2n+1) 0000000000 »00000,0 (2rn+1)-000000000000.

00000, Altman (1963) 00000000, 000 Fishburn (1995) 0000000 O0O.

00 (Fishburn, 1995)
2n 0000000000 n-00000,0 (2rn+1)-000000000 2n-00000.

ggodobobobooooooobobbooog.
00 (Fishburn, 1995)
00000 n000,220000000000 (n+k)-000000000000000O0O0O0DCOOO
k0000 f(n) DODOO

000000000,0000000 S'00000,00000000 f(r)0000000DOO.

d |1 2 3 4 5 6 7 8 k |2 3 4 5 6
Max [3 5 6 10 16 27 29 45 Max [ 5 7 9 12 13(?)
O00k=2d=2000000000

XX G

5-0000 6-0000 7-0000
obooooobooooobooboboooboboo,0obooboboocooboobon



oboooooboooooboooooon.

00 10000 k0000 XCR' ([ X|=n)0 k<23 00000, X C Path(m) 000 m 00

O00.000 Path(m)O,0000000 mO0ODOOO.

0010000,000 k0000,k=(3%3/000 0 k00000 Path(m) 0000000
0000000 (000)00000.0000000000000000.

020000 2,0 k0000 XcS'0 k< |32 00000,X0000000000000.

0000000 1000000000,000 k0000 k=|%]000 00000000000
000000000000 (000)00000.000 f*(r)=[%]-1000.

ooo,0o0oo000ooooboogo,bobo0o0ooooooboooooooobOoOobO0oO0O00. 000 d,k
goooobooboobgooobooooboboobooboo,oo0,bobboobooboobooobg.

00 (Nozaki, preprint)

N= """+ (%) 000.RY00 k00000 2N000000000000000000000.

oooooobo 4, k0000,00000000000DO00DDODOOODOOOOOODOOO.
OO00,0000000000002N0 EODDOOOOD. k=20000,0000000000.

00 (Einhorn-Schoenberg, 1966)
RIODO 2-00000 d+2000000000000000000000.

00000 d0000 d+100000 RY0OD 2-00000000000000,k=2000,0
oobooooooooooboobooboooboob. oo, 0200000b000b00,00000D000.0
obooobOooooooobooooooboon.

030000 n0 k-DO0OOO kSL%JDDDDDD,DDDDDDDDDDDDDD.

040000 2n0 k-ODOO0OO kgL%jDDDDDD,DDDDDDDDDDDDDD.
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Optimal Fractions of Two-level Factorials under a Baseline Parametrization
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Optimal fractional factorial designs have received significant attention in recent years. Tradi-
tionaly, they have been studied under specific model assumptions. More recently, there has
been emphasis on model robustness and optimal designs under the minimum aberration (MA)
and related criteria have been explored. See Mukerjee and Wu (2006) and Xu, Phoa and Wong
(2009) for reviews with focus on the regular and nonregular cases respectively.

While the aforesaid body of work is based on the foundation of the usual orthogonal parame-
trization (OP) for the factorial contrasts, the present paper aims at exploring optimal two-level
factorial fractions under a nonorthogonal baseline parametrization (BP) which arises naturally in
many practical situations. So far, full factorials under BP have been studied in microarray expe-
riments; see Banerjee and Mukerjee (2008) and the references therein. Fractional factorials,
which are often of compelling interest from consideration of experimental economy, are yet to
be investigated under BP. Their study poses two challenges: (i) regular and nonregular designs
have to be treated at par because of nonorthogonal parametrization, (ii) isomorphism is more
complex than in OP as levels of factors are not interchangeable.

Consider a 2™ factorial with factors F,..., F,,, each at levels 0 and 1. Let 7(j;...],,) denote
the effect of a typical trestment combination j;...j,,. Suppose there is a null state or baseline
level, say O, of each factor. Then under BP, 7(00...0) =6, is the baseline effect, while we have

7(100...0) =65+ 6, 7(010..0) =6y + 65, 7(110..0) =6, + 6, + O, + 6y,
etc., where ¢, isthe main effect of Fj, 6, isthe main effect of F,, 6;, isthe interaction effect
F,F,, and so on. Note that these main and interaction effects are contrasts in the z(j;...j,) but

not orthogonal contrasts. The BP is appropriate if there is a null state or baseline level of each
factor — e.g., in atoxicological study with binary factors, each representing the presence or ab-
sence of a particular toxin, the state of absence can be the natural baseline level of each factor.
Indeed, a baseline level can be interpreted in a broad sense. It need not strictly mean the zero
level on some scale but may as well refer to a standard or control level like the one currently
used in practice. Thus in an industrial experiment on quality improvement via a change in the
settings of several machines, the current settings may constitute the control levels.

In order to develop our theory, we first find optimal main effect plans under BP assuming the
absence of all interactions and then, from the perspective of model robustness, minimize the
contamination due to possible presence of interactions. Consider N experimental runs j ... jym>

1<u<N. Let Zbean N xm array obtained by writing each run as a row. As usual, the obser-

vations are assumed to be uncorrelated with common variance &2.
Proposition 1. Suppose all interactions are absent. If an N-run design keeps each of é,,...,6,,

estimable, then Var(éi) > (41 N)az, where é, isthe BLUE of &, 1<i <m. This lower bound is

attained for every i if and only if Z formsan orthogonal array OA(N, m, 2, 2).
Proposition 2. Suppose all interactions are absent. If Zformsan OA(N, m, 2, 2) then the asso-
ciated design is universally optimal among all N-run designs for inferenceon 4,,...,6,,.



Because the main effects are of primary importance, we continue with designs such that the
array Z forms an OA of strength two. No assumption is made now about the absence of interac-

tions and we proceed to quantify the resulting bias of (él,...,ém)'. Let Qgbe the collection of s-
tuples g;..05,1<0;<...<gg<m. For anys>2and g;...9 € Qg, define a(g,...gs) as the
number of times (1 1 ... 1) occurs as a row in the N x ssubarray given by the g;th,..., gsth

columns of Z. Let B, be a certain mx (T) matrix with elements dictated by the «(g;...9s) and

6 be vector of the (T) s-factor interaction effects.
Theorem 1. If no assumption is made about the absence of interactions then the bias or conta-
mination of (6,,...,6,,)" asan estimator of (6;,...,6,,)' isgivenby M, B,6 .

With aview to keeping the contamination small, under the effect hierarchy principle, we look
for a design that sequentially minimizes the sizes of B,,..., B, as given by K¢ =tr(BsBg); vide
Tang and Deng (1999) who worked under OP. Thus the MA criterion under BP calls for sequen-
tial minimization of K,,...,K,,. One can work out explicit expressions for K,,..., K, and verify

that beyond the first term K,, no general connection exists with the corresponding sequence
under OP. The values of K,,...,K,, remain unaffected under row or column permutations of Z

but can get affected if the symbols in some of the columns of Z are interchanged. This shows
that the class of nonisomorphic designs under BP is much larger than that under OP. Based on
the detailed expressions of Ks,...,K,,, one can tabulate MA designs under BP for N = 8, 12 and

16. Moreover, the following result holds.

Theorem 2. Let N=4t, m=4t—1or 4t —2and suppose an OA(4t,m,2,2) exists. Then a de-
sign has MA under BP if and only if the associated Z is an OA(4t,m,2,2) with one row consist-
ing only of zeros.

In general, however, MA designs under BP are not characterized by Z with one row consisting
only of zeros, and a counterexample exists for N = 8, m =4, where no design with such Z can
have MA.

Many open problems emerge from the present work. These concern the development of more
theoretical results and extension of tables to higher values of N. The former is complicated be-
cause a connection with Hadamard matrices that facilitates the proof of the Theorem 2 ceases to
hold in a manageable form when one goes beyond the saturated and nearly saturated cases. The
latter becomes challenging because not al combinatorially nonisomorphic OA(N, m, 2, 2) are as
yet known for higher values of N. Furthermore, general factorias including mixed factorials de-
serve attention. There, even in the absence of all interactions, orthogonal arrays may not be op-
timal under BP and balanced arrays seem to be more promising.
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On optimal ternary linear codes
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An [n, k,d], code C is a linear code of length n, dimension & and minimum weight
d over Ty, the field of ¢ elements. The weight of a vector € F, denoted by wt(x),
is the number of nonzero coordinate positions in . We only consider non-degenerate
codes having no coordinate which is identically zero.

A fundamental problem in coding theory is to find n,(k, d), the minimum length
n for which an [n, k, d], code exists. See [2] for the updated tables of n,(k,d) for
some small ¢ and k. For ternary linear codes, ns(k,d) is known for k£ < 5 for
all d, but the value of n3(6,d) is unknown for many integer d. It is known that
n3(6,d) = g3(6,d) or g3(6,d) + 1 for 253 < d < 267, n3(6,d) = g3(6,d) + 1 or
g3(6,d) 42 for 310 < d < 312 and ¢3(6,d) < ng(6,d) < g3(6,d) + 2 for d = 302, 303,
307-309, where gs(k,d) = 3.1~ [d/3"] is the Griesmer bound, see [3]. An [n, k,d],
code attaining the Griesmer bound is called a Griesmer code. Our purpose is to
construct some new codes as follows.

Theorem 1. There exist codes with parameters [385,6,255]3, [389, 6, 2583,
(393, 6,261]5, [398, 6,264]3, [402, 6, 2675, [457, 6,303]5, [466,6,309]3, [470,6, 312]5.

Corollary 2. (1) n3(6,d) = g3(6,d) for 253 < d < 267.
(2) n3(6,d) = g3(6,d) + 1 for 310 < d < 312.
(3) n3(6,d) = g3(6,d) or g3(6,d) + 1 for 301 < d < 303 and 307 < d < 309.

It was shown in [3] that at least three non-equivalent Griesmer [406,6,270]5 codes
exist. We construct the codes in Theorem 1 from one of the [406, 6, 270]3; codes. We
refer to [3] for the geometric method to investigate linear codes over F, through the
projective geometry. We use the notations 6;, vy, Ci, A, me(S), v;(I1), v; = 7;(2)
and a; as defined in [3].

Five of our new codes are constructed applying the following lemma.

Lemma 3. Let C be an [n, k,d], code and let U}°,C; be the partition of ¥ = PG(k —
1,q) obtained from C. If U;>1C; contains a t-flat I1 and if d > ¢', then there exists
an [n — 0, k,d — ¢'], code.

Lemma 4. Let C be a [109,5,72|3 code with a; =0 for all i ¢ {1,10,19, 28,37} and
let Co U Cy U Cy be the partition of X = PG(4,3) obtained from C. Then Cy U Csy
contains a line. Furthermore, for any line Iy C C7 U Cy, there are two more lines
lo,l3 C CyUCYy such that 1y, 1o, 13 are skew.

Lemma 5. Let C be a [136,5,90]3 code and let Cy U Cy U Cy be the partition of
Y. = PG(4,3) obtained from C. Then

(1) a; = 0 for all i ¢ {10,19,28, 37, 46}.

(2) C1 U Cy contains a plane if Ay = |Cp| < 18.



Let C be a Griesmer [406, 6, 270]3 code with spectrum (asa, a199, a136) = (1,12, 351)
found in [3] and let Cp U C; U Cy be the partition of ¥ = PG(5,3) obtained from
C. Then it is known from [3] that (Ao, A1, Aa) = (51,220,93), where \; = |C;].
Note that 109-hyperplanes and 136-hyperplanes correspond to [109,5,72]3 codes
and [136, 5,90]3 codes, respectively. Let II;59 be a 109-hyperplane. Since any j-solid
in a 136-hyperplane satisfies j € {10, 19,28,37,46} by Lemma 5, it can be checked
that any j-solid in IIjg9 satisfies j € {1,10,19,28,37}. Hence, we can take two
skew lines containing no 0-points in Iljo9 by Lemma 4(1). It follows from Lemma
3 that a [402,6,267]; code and a [398,6,264]3 code exist. Let b; be the number of
hyperplanes II of ¥ with |[II N Cy| = 7. With the aid of a computer, we get

(b427 b277 b247 b217 b187 b15) = (17 ]-27 127 127 1207 207) (1)

Let Ilgs be the 82-hyperplane. Since the Ilgy contains at least 39 O-points, it contains
exactly 42 0-points from (1). It can be also checked that the 109-hyperplanes contain
exactly 27 O-points. Hence, a hyperplane containing exactly 18 or 15 0-points is a
136-hyperplane and it has a plane contained in C; U Cy by Lemma 5. Since the
number of 4-flats through a fixed plane in 3. is #;, = 13, one can take a 136-hyperplane
IT; through a plane d; contained in C; U Cy and a 109-hyperplane II; so that 11, N ¢
is a line, say [;. Actually, taking

§ = (120000, 001210, 110111) C C; U Cs,

it turns out that all 4-flats through 0 are 136-hyperplanes, and applying Lemma 3
gives a [393,6,261]3 code with spectrum

(a787a10570123,a132) = (17 12, 13,338)-

From Lemma 4(2), we can take two lines Iy and [3 in I, such that [y, 5, [3 are skew
and that I, Uly U3 is contained in C; U Cy. Hence we get a [389, 6, 258|3 code and
a [385, 6,255]3 code applying Lemma 3 again. Indeed, taking lo = (010101, 100001),
we get a [389, 6, 258]3 code with spectrum

(CL77, a101, @104, @119, @122, @128, a131) = (1, 2,10,1,12, 37, 301),
and taking I3 = (110000, 000101) gives a [385,6,255]3 code with spectrum
(a76,@97,CL103,a118,a121,a124,a12770130) = (L 2,10,2,11, 2, 707266)-

Applying the following well-known lemma, we get a [457, 6, 303]3 code, a [466, 6, 309]3
code and a [470, 6,312]3 code.

Lemma 6 ([1]). Let Cy be an [ny, k,dy], code and Cy be an [ng, k—1,ds], code. If Cy
has a codeword ¢ with wt(c) > dy + da, then an [ny + ne, k,dy + ds], code Cs exists.
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On Separable Codes
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Coding providing certain forms of traceability to protect multimedia contents against piracy
has been extensively studied in recent years [2, 8]. In order to hinder averaging attack which is
one of the commonly used collusion attacks, the notion of a t-resilient AND anti-collusion code
(t-AND-ACC) was proposed by Trappe et al. [11, 12] to detect, with code modulation, up to ¢
malicious users taking part in the averaging attack. Several constructions for --AND-ACCs can be
found in, for example, [11, 12, 5, 7, 3]. Unfortunately, the number of codewords in a t-AND-ACC,
which corresponds to the number of fingerprints assigned to authorized users, is too small to be
used in a multimedia fingerprinting system with a large number of users .

To overcome the shortcomings but keep the advantages of t~-AND-ACCs, Cheng and Miao [3]
introduced a new concept of t-resilient logical anti-collusion code (t-LACC). t-LACCs have weaker
requirements than t~-AND-ACCs but they have the same traceability as t-AND-ACCs do. In [3],
Cheng and Miao also introduced the definition of a t-separable code (£-SC), showed that a binary
t-SC is in fact equivalent to a t-LACC, and explained how #-SCs can be used to construct t-LACCs.
Their efficient detection algorithm [3] based on a special type of --LACCs works well for a large
multimedia fingerprinting system to identify up to ¢ malicious users taking part in the averaging
attack.

In this paper, we focus our attention on combinatorial constructions of t-SCs. Combinatorial
constructions for other types of collusion-secure codes can be found in [10, 9]. We first exhibit some
basic definitions of collusion-secure codes used in multimedia fingerprinting, then show several
preliminary results on ¢-SCs, including several upper bounds on the number of codewords in a
t-SC. The composition construction for binary ¢-SCs, that is, --LACCs, stimulates us to investigate
2-SCs with short lengths. We also investigate 2-SCs of length 2, and show that any projective plane
can yield an optimal 2-SC of length 2. Optimal 2-SCs of length 3 will been explicitly constructed
by means of cyclic difference matrices.

Theorem 0.1 (1) There exists an optimal 2-SC(2, M, q) with M = q(1+v4q AU+VIAG=3) g, any prime
1

V4g—3—-1
2

(2) M(2,2,43) < 300; M(2,2,111) < 1220.

power

Theorem 0.2 There exists an optimal 2-SC(3, ¢ + %, q) for any odd integer q.

Theorem 0.3 There exists an optimal 2-SC(3, ¢ + @, q) for any even integer q.
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Existence of affine a-resolvable PBIB designs with some constructions
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The concept of a balanced array (BA), which is a generalization of an orthogonal array, was first
introduced by Chakravarti (1956; Sankhya) as a partially BA. However it is a generalization of the
BIB design rather than the PBIB design. Thus Srivastava and Chopra (1971; AMS) called it a BA. As a
special case of an asymmetrical BA given by Nishii (1981; HM.J), a partially BA (PBA) of 2 symbols
and m;+m, constraints was introduced by Kuwada (1988; JSPI). A PBA of full strength is said to be
simple, and it is briefly denoted by SPBA(m+m;{ A, . }), where A4, are the indices of an SPBA.

Let T be a fractional factorial design with m+m, factors each at two levels and N assemblies (or
treatment combinations), where m;>2 (k=1,2), and non-negligible factorial effects are the general
mean(=60y, say), the main effect(=6,, say) of the m, factors, the main effect(=8,,, say) of the m, fac-
tors, and the two-factor interaction(=6;,, say) between the m, and m, factors. Then the linear model is
given by y(7)=E;O+er, where p(T) is the Nx1 observation vector, Er is the design matrix of size
NxV(my,m5), @=(6000’;6010°;601°;611) is the V(m,,m,)x1 vector of non-negligible factorial effects, and e
is an Nx1 error vector with mean 0y and variance-covariance matrix o°ly. Here v(my,my)=(m+1)(m,
+1) and 4’ denotes the transpose of a matrix 4. Thus the normal equations for estimating @ are given
by MO =E7’y(T), where M{(=E7 E7) is the information matrix of order V(m,m,).

Consider the matrices D:““"?) given by some linear combination of the ordered association
matrices D(““’2 ) of order v(ml,mz) of the extended triangular multidimensional partially balanced
(ETMDPB) assomatlon scheme, where if ,3,=00, then a;a,,b0,=00,10,01,11, if B,3=10, then a;a,,
b bz 10 11 lfﬁ1ﬁ2—01 then alaz,b b2—01 11 and lfﬂlﬁz 11 then alaz—b bz—ll

Let 4= [D(““’2 2201, then A=[ Dy W’”)] Note that 4 is called the ETMDPB association algebra.
Further let Aoi=[ DE““")| a1a,,b, i; =00,10,01,11], 4yo=[ Dis““"™)| a1a,,b1b,=10,11], A= D"
| @1a,b:b,=01,11] and 4= [D#“””] Then we have the following (e.g., Kuwada (1988); JSPI):

Proposition. (I) The ETMDPB association algebra A generated by twenty-five matrices D™,
Djjacht) - pachb) - gpg pEYY s the semisimple and completely reducible matrix algebra con-
taining the identity matrix of order V(m,my).

(IT) The f/l,m? (8:5=00,10,01,11) are the minimal two-sided ideals of ‘A.

(IIl) The 4 is decomposed into the direct sum of four two-sided ideals Az s of ‘A.

(IV) The ideals Ay, Ao, A1 and Ay, have Dy hb) - plaahi) D#ﬁ""2 M) and DIV as their
bases, respectively, and they are isomorphic to the complete 4x4, 2x2, 2X2 and 1x1 matrix algebras
with multiplicities 1(=@oo, say), mi—1(=dyo, say), my—1(=@y, say) and (m;—1)(m,—1)(=¢\1, say), re-
spectively.

The information matrix My is given by M7=355 3, . 2 ;1;’; bz D#(gl"z hb) where T'is an SPBA(m1
+my{ A, })and K2 ™ are given by some linear combination of i, From Proposition, M7 is iso-
morphic to || K5 b2 |[( K5, , say), and hence we get the following:

Lemma 1. Let T be an SPBA(m1+m2,{ Aii, ). Then the information matrix My is non-singular, i.e., T
is a partially balanced fractional 2" factorial (2"""™-PBFF) design of resolution R({00,10,01 11})
if and only if Kgp ($13:=00,10,01,11) are non-singular, i.e., rank{Koo}=4, rank {Ko}=rank {Ky }=2
and rank{K,,}=1.

Let T'be an SPBA(m+my;{ 4, , }), and further let Fo, Fio, Foi and Fi; be a 4x(m;+1)(m,+1) matrix,
a 2x(m;—1)(my+1) one, a 2x(m;+1)(my—1) one and a 1x(m;—1)(m,—1) vector such that a 4x1 vector
Foo(x,y) of Foo, a 2X1 one Fiy(x,y) of Fig, a 2X1 one Fy (x,y) of Fp; and an element F(x,y) of F, are
given by Foo(x,y)= A, (L m—2x my-2y (m=2x)(my-2y))’ for (x,y)€ Voo, Fo(x,y) =4[ A, (1 my-2y)’
for (x,y)e Vip, For(x,y)=+/A,, (1 m—2x)’ for (x,y)€ Vo1 and Fi1(x,y)=4/A,, for (x,y)e V11, respectively.
Here Vjp are the sets of the lattice points (x,y) such that Voo={(x,y) | 0<x<m, 0<y<m,}, Vie=1{(x,y) | 1
<x<mi—1, 0Sy<mo}, Vor={(x,y) | 0=x<my, 1<y<mo—1} and Vy={(x,y) | 1=x<m—1, 1<y<m,—1}, where x
and y are non-negative integers. Then we have the following (e.g., Kuwada et al. (2006); JJSS):



Theorem 1. Let T be an SPBA(m+my;{ A, ;, }), where mi>2 (k=1,2). Then the matrices Kgzz (B

=00,10,01,11) can be expressed as Kgp =(Dgp Fpp App, N Dpp,Fpp,App,)» where Dgg and Agp
are some non-singular diagonal matrices.

It follows from Theorem 1 that rank{ K }=r-rank{ F, } ($,3,=00,10,01,11), where r-rank{4}
denotes the row rank of a matrix 4. Thus from Lemma 1, the following is immediately:

Lemma 2. Let T be an SPBA(m+my;{ A, ;, }). Then T is a 2" -PBFF design of resolution R({00,10,

01,11}) if and only if r-rank {Fipo} =4, r-rank {F'o} =r-rank { Fy; } =2 and r-rank {F|; }=1.

Let SVjs (Bi-=00,10,01,11) be the subsets of V5 such that the indices A., of an SPBA are
non-zero for (x,y)e Vg5 . Then we obtain the following:

Lemma 3. Let T be an SPBA(m +my;{ A, , }). Then r-rank {(Foo(x1,y1) Foo(x2,v2) Foo(x3,y3) Foo(X4,v4))}
:r_rank{FOO((xlayl)a(x2ay2),(x33y3)a(x4,y4))} fOl" (-xl"yl')e SVOO (i:1,2>3,4)3 r_rank{(Flo(xl,yl) Flo(xzayZ))}

=r-rank {F1o((x1,1),(x2,02))} for (xiy)€SVio (i=1,2), r-rank{(Foi(x1,y1) Fo1(x2,2))}=r-rank {Fo:((x1,1),
(x2,y))} for (x;,y0)e SVo (i=1,2) and r- rank{F“(x,y)}—r rank {F,(x,y)}=1 for (x,y)e SV11, where

Foo((x1.01),(62:02),(¥3,3),(xa.v))=(the i column vector=(1 x; y; xp1)’ (i=1,2,3.4)) for (xiy))e SVoo,
Fio((x1:01),(2,2))=(the i column vector=(1 y)’ (i=1,2)) for (x;,y:)€ V1o, and
For((x1,01),(x2,02))=(the i" column vector=(1 x;)’ (i=1,2)) for (x;,y;)€ SVo.

From Lemmas 2 and 3, we get the following useful lemma:

Lemma 4. Let T be an SPBA(m+my;{ A, ;, }). Then
(I) r-rank{Foo}=4 if and only if there exist at least four indices A, , (i=1,2,3,4) such that |Foo((x1,01),
(x2,02),(x3,13),(x4,y2)|#0 for (x;,y))€ SVoo, where |A| denotes the determinant of a matrix A, i.e.,
(1) if ox, Py, =ox,t Py ~=ox,+By(=d,,, say) for some o and B, then oxs+Py#d,,, where o0 and
{p,q.r,s}={1,2,3,4}, and
(ii) if any three of four o xi+f y; are not all the same for any & and 8, and furthermore
(1) if xy=x#x, Vy#yy), then yity, (and xi#x,(=x,)),
) if y=ye#yr (7x,), then x#x, (and y#y,(=y,)), and
() if xi#£x; and y#y; for any {ij}c{1,2,3,4}, then 2hpq,‘xéys+2j§q,x5+2gpqryb+cpqﬁbO where 2hy,,=|the
i column vector=(1 x; yi)’ (i=p,q.r), 2fyu=lthe i column vector=(1 y; xp;)’ (i=p.q.1)|, 2gp=|the
i™ column vector=(1 x; xy:)’ (i=p.,q.r)|, and c,,=— |the i column vector=(x; y; xy)’ (i=p.q.r)|,
(IT) r-rank {Fo}=2 if and only if there exist at least two indices A, , (i=1,2) such that |Fo((x,31),
(x2,2))I20 for (x,y)e SV, i.e., yi#ya,
(IT) r-rank{F o, }=2 if and only if there exist at least two indices A, , (i=1,2) such that |Fo,((x1,)1),
(x2.02))I#0 for (xiy:)e SVor, ie., xi17x2, and
(IV) r-rank {F, }=1 if and only if there exists at least one index A, such that (x,y)e SV1;.

Let Ny, Nm, Ny, and N,; be the cardinal number of SVOO—{SVIOUSVOIUSVI 1= SVeo say) SV
SV (=SVyy, say), SVy—SV;1(=SV,, , say) and SV“( SVH, say) respectlvely Note that SVM (B>
=00,10,01,11) are mutually disjoint and SVoy= SV, SV,y U SV, U SV;,. Then from Lemma 4, we es-
tablish the main theorem of this paper as follows:

Theorem 2. Let T be an SPBA(m+ma;{ A, ;. }), where m>2 (k=1,2). Then T is a 2" -PBFF design
of resolution R({00,10,01,11}) if and only if there exist at least four indices 2., (i=1,2,3,4) such
that they satisfy the conditions of Lemma 4.(1), where (x;,y;)€ SVoo, and Ny, >1, and moreover

(D) if N11=1, then Nip>1 and Nyi>1,

(1) if N\1=2, and furthermore
(1) if x=x; (v#y)), where (x1,y,),(x;,y,)€ SV;y for {ijic{1,2,3,4}, then Ny;>1,
(if) if v, (), where (e (o)e SV for {iyic{1,2.3,4}, then Nig21, and
(iii) x#£x; and y#y;, where (x.,y,),(x;,,)€ S Viy for {ijic{1,2,3,4}, and

(IIT) N, >3.
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A balanced array (BA) of strength sizeN, m constraints, three symbols and index ggj;, ;.|
jo+ j1+ j2 = t} is briefly denoted by BA{, m, 3,t; {¢j,,j,})- As a special case of a BA, a BA of
strengthm (i.e., full strength) and index séd;,,i,lio + i1 + i = m} is called a simple array (SA)
and it is denoted by SA§{1i,,i,}) for brevity. Under the assumption that the+« 1)-factor and
higher-order interactions are negligible, if all the factorifibets up to the/-factor interaction are
estimable, then a design is said to be of resolutidghH{2). If the variance-covariance matrix of the
estimators of the factorialfiects to be of interest is invariant under any permutation on the factors,
then the design is said to be balanced.

In this paper, we present a necessary arfiicsent condition for an SAG; {4i,i,i,}) to be a bal-
anced fractional "8 factorial (3"-BFF) design of resolution Ill{= 1) by use of a decomposition of
the irreducible representations of the information matrix.

We consider a fractional3factorial desigrT derived from SA(; {4;,i,}), where the two-factor
and higher-order interactions are assumed to be negligiblerend®. Then anN x 1 observation
vectory(T) based orT is expressed agT) = E10 + er, whereEy, ® andey are theN x (1 + 2m)
design matrix, the (& 2m) x 1 vector of the non-negligible factoriaffects, and amN x 1 error
vector with mearDy and variance-covariance mati¥|y, respectively. Her@ = (6 6’ 60,)’
andN = 3 i 4i,=m{m!/(ioli1!i2!)} Aigisi,- Then the normal equations for estimatifigare given by
M@ = E;y(T), whereMr (= E;Er) is the information matrix of order  2mandA’ denotes the
transpose of a matriA. Note that ifMt is non-singular, theit is of resolution Ill.

Let T be an SAM; {4,,i,}). Then the information matriMy associate withl is isomorphic to
the symmetric matricemgiaz’blbzu(: Ko, say) of order 3 angl;"**""?||(= K, say) of order 2, i.e.,
there exists an orthogonal matfof order 1+ 2m such that

m-1

, ) /—/%
Q) P Mt P = diag[Ko; Kt, ..., K¢].

Here that the matricds; (8 = 0, f) are called the irreducible representation/af, Wherexgla‘z*blbz (or
K*2'12) are given by some linear combinationsqf,i,.

Theorem 1. Let T be arSA(m; {1i,i,i,}), then the matrices K(8 = 0, f) can be expressed as
) Ky = (DgFpp)(DsFphg) -
Here Dy = diag[1; 1/ vm; 1/ v/m] and D; = diag[-1; 3], the column vectoF(x,y) of Fy which is

of size3x ("*2*2) and the2 x 2 submatrix k(x,y) of Fs which is of siz& x (m- 1)(m+ 4) concerned
With Am-x_yxy are given by

3) Fo(%Y) = \Am sy (L — (M= X~ 2y) M= 3% ((x.Y) € Vo) and

@ Fi) = V| 2T BN (e e v

respectivelyand the diagonal element of the diagonal mattixand the2 x 2 block diagonal one
of the diagonal matrixis concerned withlyy_yxy are given by

Vmi/{(m=x=y)Ixiy1] ((x.Y) € Vo) and
Jml/{(m— x — y)Ixtylidiag[y/1/{(m - 1)(m - x)}; Y1/{m(m—1)(m—x)}] ((x.y) € Vs),
respectivelywhere \§ = {(x,y) € N§|x +y<m}jand Vs = Vo \ {(0,0),(m,0), (0, m)}.




It follows from (2) that rankKz} =r-rankFg} for 8 = O, f, where r-rankA} denotes the row rank
of a matrixA. Then the following is obtained:

Lemma 1. Let T be anSA(m; {Ai,,i,}), where m> 2. Then a necessary andjgaient condition for
T to be a3™-BFF design of resolutiofil is thatr-rankFo} = 3 andr-rankF¢} = 2.

By (3) and (4), the following can be easily proved:

Lemma 2. Let T be arSA(m; {2i,,i,}), where m> 2. Then the following hold
() r-rank{Fo(x,y)} = Lif Am-x_yxy # O for (x,y) € Vo and
[ 1 if Amxyxy # Ofor (x,y) € V},
() r-rankiF(x y)} = { 2 if Amosyuy # O fOF (X,Y) € V2,
whereFo(X,y) and F¢(x,y) are given by(3) and (4), respectivelyand sz ={(xy) e N | x+y<
m-1jand V' = Vi \ V2 = {(x,0)1 < x<m-1JU{(O,y)I1 <y <m-1U{(Xy)m-x-y=0,1<
X<m-1}L

From Lemma 2, we have the following:

Lemma 3. Let T be arSA(m; {Ai,,i,}), where m> 2. Then we have
() r-rank{Fo} = 3 if and only if there exist at least three non-zero indidgsy_yxy (%, Vi) €
Vo (i = 1,2, 3)) such thatFo((x1, Y1), (X2, Y2), (X3, ¥3))| # O, where Rp((X1, Y1), (X2, Y2), (X3, ¥3)) =

1 1 1
yi Y2 Vs|and|Al denotes the determinant of a matrix A
[Xl X2 X3
(I r-rank{F:} = 2if and only if one of the following holds
(i) There exists at least one non-zero iNdgXx—yx((X Y) € sz), or

(i) there exist at least two non-zero indicés x-yxy (X, Vi) € Vi (i = 1,2)) such that(’x‘;) #
0, (32) # 02 and (-i0%)+ 05, wheredm xyxy= Ofor all (xy) € V2.

M=X2—Y2
Let F5((X1, Y1), (X2, ¥2), (X3, ¥3)) be a 3x 3 submatrix ofFo concerned with three non-zero indices
Am-x—yxy (i = 1,2,3), where &, i) € Vo, andF§((x1, Y1), - - , (X, Yn)) be a 2x 2n submatrix off¢
concerned witi non-zero indiceSmx—yxy (i = 1,...,n), where &, y) € Vi. Then from (3), (4)
and Lemma 3, we have the following:

Lemma 4. Let T be anSA(M; {4;,,i,}), where m> 2. Thenr-rankFo} = 3 and r-rankF;} =
2 if and only if there exist at least three non-zero indicksx_yxy (I = 1,2, 3) such that(i)
r-rank F5((x2, Y1), (%2, ¥2), (Xs, ¥3))} = 3 andr-rankF; ((x1, y1))} = 2 for (x1,y1) € VZ and (X, i) €
Vo (k = 2,3), or (i) r-rankFg((x1, Y1), (X2, Y2), (X3, ¥3))} = 3 andr-rankF;((x1, y1), (X2, ¥2))} = 2
for (X, Yi) € V} (k = 1, 2) and (X, Y3) € Vo.

Lemmas 1, 3 and 4 lead us to the main result of this paper as follows:

Theorem 2. Let T be arSA(M; {4i,i,i,}), where m> 2, and further let I\?(S) =#(xy) € S|(x.Y) €
sz}, where S= {(X,y) € Voldm-x—yxy # 0}. Then T is é8™-BFF design of resolutiofil if and only if

there exist at least three non-zero indicks x—yxy (i = 1, 2,3) such that they satisfy the following
conditions
(1) 1 N2({(x1. Y1), (%2. Y2). (s Y3)}) = O, then(x.yi) € V (k = 1,2) and (xs.y3) € Vo, where
(%) # 02, (%2) # 02 and (%) 0,, and
(“) |f Nfz({(xlv yl)’ (X29 y2)9 (X3’ Y3)}) Z 1, |e, (Xls yl) e sz , thEn(Xk, yk) € VO (k — 2’ 3)’ Where
IFo((Xw, Y1), (X2, Y2), (Xa, ¥3))| # 0. Here Ro((Xa, Y1), (X2, ¥2), (X3, y3)) is given inLemma 3
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Mutually M-intersecting K-arcs & JGIEAAFF 5 ~DIGH

HORBBERSE BT A
MRS RS R

1. FUSIC 778 ¢ DEREK EOSEEE PG(2,q) IKBWT, EDd+ 1 fbH—EH Eicknk
VR kRO (kyd)-arc WS, 722U, d 2&L, FlZd=2D L E, k-arc EFHS.
k-arc WHEET 270D kE D AMEIX, ¢ DPFHDEEIZg+1THY, ¢ MEHDEEL ¢+2TH
%, ¥, fEE®D conic \& (¢+ 1)-arc TH 2B I EDBRSHENT VS, ¢ MEED & E, conic DF
HOBRIE —HTRbD, ZDE%E nucleus LW, LED conic LD M E Z D nucleus Z&HE7-
READ (¢ +2)-arc 1L 5 2 LIFBEZITRINS,

Definition 1 M ZJFE%E, K,D 2 2N ZNUFEROIAFEAGT|K| = |D| £ $ 5. (EED ki, k; €
KT LT, (ki di)-arc & (kj,dj)-arc DR m A, 7L meMTH5EE, ZD arc D
% 1 % mutually M-intersecting (K, D)-arcs Tdh 5 L\,

fHDO7-DIZ, D ={2,2,...,2} D & ZlF mutually M-intersecting K-arcs D X 9 Ic&€b L, K = {k}
7% 5 1F mutually M-intersecting (k, d)-arcs ¥ mutually M-intersecting k-arcs £ &b T2 LI T 5,

¥, A w; € W BI—ETHRWHELZF 513 Yang [2] 12X > T 1996 FICREI N, n 2F/5
B, W=A{wy,...,wp,} ZHEADINE L, Q= {q,...,q} ZHA w; DFFFEEORMKIT LD 5 EH
q; D ERLII, L=(9,..., ?)2EHAw; 2ROMFFED auto-correlation D LRfE 7 @

) a

Hl, . % cross-correlation D LR E 2 &5 BFH CZ#UTDO LI ICERT 3.
Definition 2 C 23LL FOWEHZ7-§ & &, C 2 W EBHALNELI S (variable-weight 00C) &M
& (WL, .,Q)-00C L&<,

e (auto-correlation property) &AM w; TH AMEREDFF 55 ¢ = (co,c1,...,0n-1) € CITXf
LT,

n—1

> ciciq )
i=0
N1t n 1R3TEDt ELED jITOWTHED LD,
e (cross-correlation property) #7%% 2 fF 556 ¢ = (co,c1, ..., cn1) & ¢ = (cf, 4y ch_q) (TR

LT,

n—1

ZCiC;-H c
=0
B0 t n 1%ZTXRTOLITRL TR D,
7L, I THEI&Z L B,

AHETIX, mutually M-intersecting K-arcs D> D2 DIEIE % DX, mutually M-intersecting
(K, D)-arcs & AIZEANERN T & DRRZR L7 BT, Hilkfi5Rilz52 5,

*E-mail: miyamoto@is.noda.tus.ac.jp
TE-mail: sshinoha@is.meisei-u.ac.jp



2. Mutually M-intersecting K-arcs & P = (a,b,c) % PG(2,q) EiZ&R W PG(2,¢%) LD, Ip
% P%ili5 F, EOZHNTERINLEME TS, Ip lEPG(2,q) LDEMELRD, £/ PG(2,¢%)
Tl P?= (a9,b9,c%) 23l 5. AT T, FTEARE ¢ B ET S, CZ2AP %252 TD conic D
EBEEL, NZilp LIZBWPG2,q) DRETHLEE, RDEIBRCDIODDHNELGEERS.
Cy ZH N %22 CDTRTD conic DEL, Cy % N % nucleus & LTHROEI R CHDTRTD
conic DEL, Cn % C D Cn & Cx DS D conic DES, T4HbE Cy :C\{CNU(fN} E95, %E
#ED, Cn,CN BEOCy BEVICHERTH 2 2 LICHEET 2.

Co={C\{N}:CeCn} tL, Ct={CU{N}:Celn} T3, 51T, C,=Cy T3, Z
D& ELUT ORERE DL D 3.

Lemma 3 Cy & mutually {0,1}-intersecting q-arcs TH 5. F7z, Coy DEZEDMWBUI |Co| = (¢ +
1)(g 1)TdH5.

Lemma 4 C; 13 mutually {1}-intersecting (q+2)-arcs T 5. £z, Co DBEZFEOMELIL|C1|=q 1
TH5,

Lemma 5 Cy 1 mutually {0,1,2}-intersecting (q+1)-arcs TH 5. F7z, Co DEFEDMBUL |Co] =
(@+1)(¢ D 2)TH2.

Lemma 6 Cy UCy & mutually {0,1,2}-intersecting {q,q + 2}-arcs TH 5. CoUCy 1 mutually
{0,1, 2}-intersecting {q,q+1}-arcs TdH 5. C;UCq 13 mutually {0,1,2}-intersecting {q+1,q+2}-
arcs TH 5,

Theorem 7 CyUCy UCy & mutually {0,1,2}-intersecting {q,q + 1,q + 2}-arcs TH 5.

3. Mutually M-intersecting K-arcs ZFAWCAIZEANXERFSDERE Miyamoto and Shi-
nohara [1] Ti, mutually M-intersecting k-arcs & HAEDNELF T & DOMIGZRL, /%
D—HIE LT , & DFRLRDERFFE % hyperoval DES» 6525 Hikz R LT, FAEDEZ
J7C, mutually M-intersecting (K, D)-arcs & O AIZHEAMELIF5MF 5105,

Theorem 8 q ZHEHRE L L, M % PG(2,q9) LD mutually M-intersecting (K, D)-arcs &7

5. ZOLE, #MEAOKFE»PGRD (P++q+1,W, L, .,Q)-00C B’HET S, I T,
c=max(DUM) THH, W=K,L=DThHs. &E, #M ZIMOEFZOELKEzEOLL, &

A Q = {q:}, ¢ 13 M D (ki, d;)-arc DEE M BED arc DEDEG, ZFR>bDET 5,

Z ® Theorem 8 & Theorem 7 & 1, A[AHEANERT SR TE 5,

Theorem 9 fEED ¢ =2, i = 1,2,..., KWL T, ¢¢ ¢ HORNTE»S%S (P +¢P+q+
L(g,q+1,q+2),2,2, (L5, WE=2) 1)) 00C BHET 5.
SE 3k

[ 1 ] N. Miyamoto and S. Shinohara, “Mutually M-intersecting (k, d)-arcs and its application to
optical orthogonal codes,” Congressus Numerantium, vol. 169, pp. 23-31, 2004.

[ 2] G. C. Yang, “Variable-weight optical orthogonal codes for CDMA networks with multiple
performance requirements,” IEEE Trans. Commun., vol. 44, no. 1, pp. 47-55, 1996.
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