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Abstract

The object of this article is to consider two multivariate families of distributions for empirical modeling. The bivariate families are first defined and extended to the multivariate case. The first family includes the family of distributions defined by Jones and Larsen (2004). Some properties of the proposed families like canonical expansion, quadrant dependence and positively likelihood ratio dependence, are then studied.

1.  Introduction
Recently, Jones and Larsen (2004) defined a family of multivariate distributions based on the multivariate distribution of order statistics to model ordered data.  If 
[image: image1.wmf](

)

x

f

and
[image: image2.wmf](

)

X

Fx

 denote the probability density function (pdf) and distribution function for random variable X respectively, the multivariate pdf is given by
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(1.1)
with the restriction
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. In empirical modelling of data it is of interest to consider families of distributions where the restriction 
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 is relaxed. The object of this article is to consider two multivariate families of distributions based on multivariate beta distributions instead of distribution of order statistics and to remove the restriction 
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2. Bivariate Families of Distributions and Properties
The first and second bivariate families of distributions are respectively defined by their pdf’s
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(2.1)
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where 
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(2.2)

(see Olkin and Liu, 2003). The marginal distributions are
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with joint moments
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where
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follows the bivariate beta distribution. Note that if 
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has a closed form, the joint moments may be tractable.
The canonical expansion of a bivariate pdf (Lancaster, 1958) is a useful tool in the study of the structure of bivariate distributions (Kotz, 1974). By using canonical expansion it can be shown that the first family is negative quadrant dependent. For the second family the series expansion in Olkin and Liu (2003, equation (1.6)) shows that it is positive quadrant dependent. The first family is not positively likelihood ratio dependent while the second family is. The multivariate extensions are straightforward and will not be stated to conserve space.
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