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Monotonic Directed Designs

Gennian Ge and Dawei Huang, Zhejiang University, China
Ying Miao, University of Tsukuba, Japan

Let X = {zg,x1,...,2,_1} be a v-set of points. A transitively ordered k-
subset (called directed block) B = (x;,, %4, - .., z;,_,) of X consists of @
ordered pairs of form (x; ,z;,) with 0 < s <t <k — 1. Let B be a collection
of transitively ordered k-subset of X. A pair (X, B) is a directed (v, k, \)-
design if any ordered pair of distinct points from X is contained in exactly
A directed blocks.

Let the points of X be linearly ordered by g < 1 < --- < x,_1, and B =
(Tig, Tiys - - -, T4y, _, ) € B be a directed block of X. Let pos(z;;) denote the po-
sition of w;, in the ordered v-set (Tigy Tig41s - -« s Ty—1, L0y L1y« -y Tig—1). Lhen
B is a monotonic directed block if pos(z;,) < pos(z;,) < -+ < pos(z;,_,).

A monotonic directed (v, k, A)-design (v, k, A)-MDD is a pair (X, B), where
the points of X are linearly ordered, satisfying the following two conditions:

1. (X, B) is a directed (v, k, A)-design.
2. Each directed block of B is monotonic.

The notion of a monotonic directed design was introduced in [1] for
the construction of difference triangle sets. An (n,k)-difference triangle
set, (n,k)-DAS, is a set A = {Aq,..., A}, where A; = {a0, a1, ..., a},
1 < i < n,is a set of integers such that 0 = a;0 < a;1 < -+ < a;, and
the differences a; — a;;, 1 <@ < n, 0 < j <1 <k, are all distinct. Let
m(A) = max{a;x | 1 < i < n} be the scope of A. An (n, k)-DAS is regu-
lar if m(A) = % Let M(n,k) = min{m(A) | A is an (n, k)-DAS}. If
m(A) = M(n, k), then A is said to be optimal. Clearly, any regular DAS
is optimal. Difference triangle sets have applications in various areas (see
[2] and references therein). In these applications, in general, better results
are obtained from difference triangle sets having small scope. Hence the fun-
damental problem in the research of difference triangle sets is to construct
optimal (n, k)-DASs for given pair (n, k).

Let F = {Bjy,..., B} be a family of k-subsets (called base blocks) of Z,.
F is a cyclic difference family (v, k&, 1)-CDF if any element of Z, \ {0} can

1



be represented in a unique way as a difference of two elements lying in some
member of F.

Theorem 1. ([1]) If there exist a (v, k,1)-CDF and a (k,h,1)-MDD, then

there exists a regular (ZEZ:?) ,h —1)-DAS, A, with m(A) =v — 1.

Theorem 2. ([1]) If there exists a regular (n, k)-DAS, then there exists an

(") 41k 4 1,1)-MDD.

Theorem 1 shows that the existence of MDDs is crucial for the construc-
tion of regular DASs. Clearly, if there is a (v, k,1)-MDD, then we have
v>k 2v—1)=0 (modk—1),and 2v(v —1)=0 (mod k(k—1)). One
known non-existence result ([1]) is that there is no (v, k,1)-MDD for k£ > 6.
However, research on the existence of MDDs is almost non-existent, except
for the examples coming from regular DASs by Theorem 2. As indicated in
[1], an example of (v, k, 1)-MDD with k£ > 4, not constructed from a regular
DAS, would be of great interest.

In this paper, we investigate monotonic directed designs. We introduce
several new concepts related to monotonic directed designs, and describe var-
ious constructions for monotonic directed designs and their related designs.
The following is the main result of this paper.

Theorem 3. The necessary conditions for the existence of a (v, 3,1)-MDD,
namely, v > 3 and v = 0,1,4,9 (mod 12), are also sufficient, and the
necessary conditions for the existence of a (v,4,1)-MDD, namely, v > 4 and
v =1 (mod 3), are also sufficient with two definite exceptions v = 4,10
and six possible exceptions v € {13,19,82,94,214,292}.
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Difference families of block size 4, 5 related to OOCs and CACs

Koji Momihara (E-mail: momihara@math.cm.is.nagoya-u.ac.jp)
Graduate School of Information Science, Nagoya University
Keywords: cyclic §-support (n, k), difference family, optical orthogonal code; conflict-avoiding code

1 Introduction. Let (Zk") be the set of all
k-subsets of Z,,, the residue ring of integers mod-
ulo n. An (n,k, A4, Ac) optical orthogonal code
(0O0C) is a family F C (Zk") satisfying:

(i) (The autocorrelation property)
I X N (X +s)] < Ag for any X € F and
every s € Zy, \ {0};

(ii) (The cross-correlation property)
XN (Y +s) <A forany X,Y € F with
X #Y and every s € Z,.

An (n,k, Ag, A\¢c)-OOC without the property (i)
is called an (n, k, A.) conflict-avoiding code (CAC).
An (n,k, Ag, Ac)-OOC (or an (n, k, Ac)-CAC) is
called optimal if the number of codewords is
maximum for given n, k, A, and A..

In this paper, we treat only the case when k = 4.
(Some of the results in this paper are generalized
to the case when k = 5. See [1, 2, 3].)

2 Upper bounds on code size. Given a k-
subset X € (%), we define the list of differences
of X by

AX:{a—b|a,b€X,a7éb}

as a multiset, and define the support of AX, de-
noted by supp(AX), as the set of underlying el-
ements in AX. Note that k—1 < |[supp(AX)| <
k(k —1) for any X € (Zk"). We define

p(X) = max{m;(AX)|i € AX},

where m;(AX) denote the multiplicity of ¢ in
AX. Then we have

w(X) =max{|X N (X +s)|:s€Zy\{0}}.

From this correspondence, it is easy to see the
following:

Lemma 2.1. Every (n,k, A, 1)-00C is a fam-
ily F C (Zk") satisfying the following conditions:

(i) Ao = max{u(X)| X € F};
(1) AX NAY =0 for any distinct X,Y € F.

The above conditions (i) and (ii) are correspond-
ing to the auto- and cross-correlation properties,
respectively. In order to get tight upper bounds
on code size of (n,4,Aq,1)-O0Cs, we need the
following correspondences.

Lemma 2.2. For X € (Z”

4 ), it holds that

|supp(AX)|

3 X = (2)Z;

4 iff X C(%)Zn;

5 iff X ={0,a,n/2,n/2+a} or
X C(§)Zy except for [supp(AX)| = 3;

6 iff X ={0,a,2a,3a} or X C (%)Zy,
except for |supp(AX)| = 3,4 and 5;

7 iff X ={0,a,n/2,n —a},
X ={0,a,n/2 —a,n/2}, or X C (§)Zn
except for |supp(AX)| = 3,5 and 6;

= 8 iff X ={0,a,a+0b,2a+ b},

X ={0,a,n/3,2n/3}, or X ={0,a,2a,4a}
except for |supp(AX)| =3,4,5,6 and 7;

9 iff X ={0,a,2a,n/2}
or X ={0,a,n/2,3n/4}
except for |supp(AX)| = 3,5 and 7;

10 iff X ={0,a,2a,2a+ b} except for
|supp(AX)| = 3,4,5,6,7,8 and 9;

11 iff X ={0,a,b,n/2} except for
|[supp(AX)| = 3,5,7 and 9.

Lemma 2.3.

4

3

2

1

For X € (Z4“), it holds that

iff |[supp(AX)| =3 or

5 (X = {0,0,1/2,n/2 + a});
iff [supp(AX)| = 4,

5 (X ={0,n/6,n/3,n/2},

X ={0,n/6,n/3,2n/3}),

6 (X ={0,a,2a,3a}) or

8 (X = {{0,0,n/3,20/3));

iff |supp(AX)| =6,7,8,9,10 or 11
except for the case u(X) = 3;

iff |supp(AX)| = 12.

By the above lemmas, we have the following
upper bounds on code size of (n, 4, A\,, 1)-O0Cs.

Lemma 2.4. (The Johnson bound) It holds that

M(”? 4,1, 1) < \_(n - 1)/12J7



where M (n, k, Aa, Ac) means the mazimum num-
ber of codewords of (n,k, A, \e)-OOC.

Lemma 2.5. Let n = 2"7°m, where m is not
divisible by 2 and 7. Then it holds that

|n/8] ifr>1,5=0;

[(n+1)/8] ifr=0,s>1;
M 42D <3 \mro)ys] ifr>1s>1;

[(n—1)/8] ifr=s=0.

Lemma 2.6. Let n = 5"6°m, where m is not
divisible by 5 and 6. Then it holds that

[(n+1)/6] ifr>1s=0;

n/6 ifTZO,Szl;
M, 4.3,1) <9 (4 92)/6] ifr>1s>1;

[(n—1)/6] ifr=s=0.

Note that the bound of Lemma 2.6 is also tight
when ged (n,30) =1 for (n,4,1)-CACs.

3 Cyclic difference families. For positive in-
tegers 0 and p with k —1 < § < k(k — 1) and
1 < p <k, let F be a family of k-subsets of
Z,, such that |supp(AB)| = ¢ and u(B) < p
for every B € F. We say that F is a cyclic ¢-
support (n, k), difference family (briefly d-supp
(n, k),-CDF) if the following are satisfied:

i) ABNAB' = () for any B,B’ € F with
(i) y
B # B’; and

(ii) Upersupp(AB) = Zn \ {0}

The members of a §-supp (n, k),-CDF are called
blocks. We clearly have n = 1 (mod ¢). For
any k-subset X of Z, with |supp(AX)| = 1
(mod 2), X must contain the element n/2 and
then n must be divisible by 2. Therefore, any 4-
supp (n,k),-CDF with 6 = 1 (mod 2) consists
of exactly one block and n = § + 1 holds. A
d-supp (n,k),-CDF with § = k(k — 1) is also
called a cyclic (n,k,1) simple difference family
which generates a Steiner 2-design with an au-
tomorphism consisting a single cycle of length
n.

By the lemmas given in Section 2, we get:

Lemma 3.1. Any 12-supp (n,4);-CDF gives
an optimal (n,4,1,1)-00C.

Lemma 3.2. Any 8-supp (n,4)2-CDF gives an
optimal (n,4,2,1)-00C.

Lemma 3.3. Any 6-supp (n,4)5-CDF gives an
optimal (n,4,3,1)-00C. Whenn % 25 (mod 30),
so is an optimal (n,4,1)-CAC.

The following are new constructions and exis-
tence theorems for §-supp (n,4),-CDFs. Fur-
ther results are referred to [1, 2, 3].

Theorem 3.4. For any prime p = 1 (mod 8),
there exists an element ¢ € Z,, s.t. {0,1,¢,c+
1} - S is an 8-supp (p,4)2-CDF, where S is a
complete system of representatives for the cosets
of {—1,1} in the set of quartic elements of Z,,.

Theorem 3.5. Let F be an 8-supp (ny,4)s-
CDF with ged (n1,6) = 1 and let

—1
F' ={{0,a;,a; + bj,2a; +b;} |1 <i < WT}
be an 8-supp (na,4)2-CDF. Define
Bjj = {0, ai+jnz, a;-+b;+3jnz, 2a;+b;+4jna}

0N Zpyn,- Then,

TLQ—].

{Bij|1<i< ,0<j<n —1}UnyF

over L, n, is an 8-supp (ning,4)s-CDF.

Theorem 3.6. Let p be a prime = 1 (mod 3" ).
There exists a set S of Z,, such that {0,1,2,3}-S
is a 6-supp (p,4)s3-CDF iff there exists an integer
r <1 s.t. 2is 3" 1th power but not 3"th power
in Z, and 6 is 3"th power in Z,.

Theorem 3.7. Let F be a 6-supp (n1,4)3-CDF
with ged (n1,6) =1 and let

-1
‘7:/ = {{Oaai,Qai,gai} ‘ 1 S 7 g n2

}
be a 6-supp (n2,4)3-CDF. Define

B, ; =1{0,a; + jns, 2(a; + jn2), 3(a; + jna)}.
on Zypyn,- Then,

1
{Bijl1<i<™®

,0<j<ng —1}UnF

over Zin,n, s a 6-supp (ning,4)3-CDF.
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BINARY SEQUENCES WITH OPTIMAL AUTOCORRELATION
AND PERIOD N =1 (mod 4 AND N=2 (mod 4

CUNSHENG DING

ABSTRACT

The autocorrelation of a binary sequertis@)) of periodN at shiftw is
N-1
ACsw)= 3 (~1)rs, (1)
t=
where eacls(t) € {0,1}. TheseACs(w), we {1,2,---,N — 1}, are called
the out-of-phase autocorrelation values. For various applications, we wish
to have binary sequences with minimal vataax <w<n—1|ACs(W)|.
Throughout this lecture, l€5(t)) be a binary sequence of peridbdd The
set

Cs={0<i<N-1:5()=1} )

is called thesupportof (s(t)); and(s(t)) is referred to as theharacteristic
sequencefCs C Zy.

The mappings— Cs is a one-to-one correspondence from the set of all
binary sequences of periddto the set of all subsets @fy. Hence, studying
binary sequences of periddlis equivalent to that of subsets 4f.

For any subset of Zy, thedifference functiorf C is defined as

dc(w) = |(w+C)NC|, we Zy. (3)
Let (s(t)) be the characteristic sequenceXofit is easy to show that
ACs(W) =N —4(k—dc(w)), (4)

wherek := |C|. Thus the study of the autocorrelation property of the se-
quenceg(s(t)) becomes that of the difference functida of the suppor€ of
the sequencés(t)).

It follows from (4) thatACs(w) mod 4= N mod 4 Hence we have the
following four cases.

Let N =3 (mod 4. Thenmax<w<n-1|ACs(Ww)| > 1. On the other
hand,max<w<n-1|ACs(W)| = 1iff ACs(w) = —1forallwz0 (modN).
In this case, the sequengg(t)} is said to havedeal autocorrelationand
optimal autocorrelation



LetN =1 (mod 4. There is some evidence that there is no binary se-
quence of perio®N > 13 with max;<w<n-1|ACs(W)| = 1. Itis then natural
to consider the casmaxi<w<n-—1|ACs(W)| = 3. In this caseACs(w) €
{1,-3} forallw# 0 (modN).

Let N =2 (mod 4. Thenmax<w<n-1|ACs(W)| > 2. On the other
handmax <w<n-1|ACs(w)| = 2iff ACs(w) € {2, -2} forallw#0 (modN).

In this case, the sequen¢s(t) } is said to haveptimal autocorrelation

Let N =0 (mod 4. We have clearly thatax<w<n-1|ACs(w)| > 0.
If maxg<w<n-1|ACs(W)| = 0, the sequencés(t)) is calledperfect The
only known perfect binary sequence up to equivalence is(@h@,0,1).
It is conjectured that there is no perfect binary sequence of pé&tied0
(mod 4) greater than 4. This conjecture is true fordlk 108900 Hence,
it is natural to construct binary sequences of pefibek 0 (mod 4 with
maxi<w<N-1 ’ACS(W)‘ =4,

There are a small number of constructions of binary sequences with op-
timal autocorrelation and period for the two case®N = 0 (mod 4 and
N =3 (mod 4. However, for the two cased =1 (mod 4 andN = 2
(mod 4), there are only three and two constructions of such sequences re-
spectively. This lecture is focused on the latter two cases.

In this lecture, we shall first introduce cyclotomy and two combinato-
rial designs: difference sets and almost difference sets. We then describe a
bridge between binary sequences with optimal autocorrelation and the two
combinatorial designs. Finally, we talk about the known constructions of bi-
nary sequences with optimal autocorrelation and peXidor the two cases
N=1 (mod 4 andN =2 (mod 4. We will also introduce five open prob-
lems on this topic, and applications of such sequences in statistics, experi-
mental designs, ranging systems, spread spectrum communication systems,
coding theory, multi-terminal system identification, code division multiple
access communications systems, global positioning systems, software test-
ing, circuit testing, computer simulation, stream ciphers, and physics.
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Title: Grid-Block Designs and Packings

Speaker: Hung-Lin Fu
Department of Applied Mathematics
National Chiao Tung University
Hsin Chu, Taiwan 30050

Abstract (Extended)

Fora v-set V,let A Dbeacollectionof rxc arrays with distinct elements in
V. Apdar (V,A) iscalleda rxc grid-block design (packing) if every two
distinct elements in V occur exactly (at most) once in the same row or in the same
column of an array in A.

From the point of view of Graph Decomposition, the existence ofa rxc
grid-block design (packing) of order v is equivalent to a decomposition (packing) of
the complete graph of order v into the Cartesian product of K;xK..  Therefore, the
study of this topic can be approached from Graph Theory and of course from
Combinatorial Design.

By direct counting, it is not difficult to see thata r xc grid-block design of order
vexistsonlyif (@ v>rc,(b)v—1=0(modr + c—2) and (c) v(v- 1) =0
(modr-c (r + c—2). It has been shown respectively by Mutoh et al. that this
necessary condition is also sufficient for the cases when (r, ¢) = (2, 3), (3, 3), (2, 4)
and (2, 5) in past years. In this talk, I’ll report the progress of the research of this topic
by noticing the following results:
1. A4x4 grid-block design of order v exists if and only if v=1 (mod 96); and
2. A 3x4 grid-block design of order v exists if and only if v=1, 16, 21, 36 (mod 60)
except v =16 (does not exist) and possibly v e {60n + 36 : n =
1,2,4,5,10,20,22,26}{60n + 16 : n = 2,3,4,7,10,18,23}.

The basic tools of obtaining the above results are direct constructions. From
previous works we have u to k-u construction and u + 1 to k-u + 1 construction
respectively by applying suitable group divisible designs (GDD). So, it is left to
construct a few small designs. Mainly, difference method will be the key tool to get
the job done. In that case, we utilize group action and a well known theorem by
Wilson.



As to the applications of the grid-block designs or resolvable packings, we mainly
introduce the use of DNA library screening. The idea is as follows. We place different
clones in each spot of a microtiter plate which is an array with size 8x12 (or suitable
size) and then every row and every column in the plate is tested in the first stage. Note
here that each row or each column forms a pool in group testing. After we have the
outcomes by testing each pool, we test each possible positive clone (determined by
the response of pools) individually in the second stage. This method is known as the
basic matrix method (BMM) which is a very efficient 2-stage group testing.



Characterization and construction of affine
a-resolvable block designs

Yoshiga High School Satoru Kadowaki
Hiroshima Institute of Technology Sanpei Kageyama

One of the earliest examples of a resolvable balanced incomplete block (BIB)
design is the Kirkman (1850a) school girl problem formulated in 1850 and
pursued further in another paper (Kirkman, 1850b). This can be seen as
equivalent to finding a resolvable solution of a BIB design with parameters
v=6t+3,b=(2t+1)3t+1),r =3t + 1,k =3, = 1. Kirkman himself gave
some solutions and many mathematicians worked on this problem in the late
19th and early 20th century. However, no complete solution was known until
Ray-Chaudhuri and Wilson (1971) completely solved the problem. This was a
celebrated open problem throughout the period 1850-1970.

Though Yates (1939, 1940) has pointed out some statistical advantages of
resolvable designs, the interest in resolvable BIB designs was greatly enhanced
by a combinatorial paper by Bose (1942).

A block design BD(v,b,r, k) is said to be a-resolvable if the b blocks of
size k each can be grouped into t sets (called a-resolution sets) of 3 blocks
each (b = t) such that in each a-resolution set every treatmenat (or point) is
replicated « times (r = at). An a-resolvable BD is said to be affine a-resolvable
if every two distinct blocks from the same a-resolution set intersect in the same
number, say, q;, of treatments, whereas every two blocks belonging to different
a-resolution sets intersect in the same number, say, g2, of treatments.

In this talk, some characterization of affine a-resolvable block designs are
dealt with from a combinatorial point of view. Their topics are concerned with
bounds on parameters in designs, the characterization of parameters in a closed
form and existence problems. The block designs discuused here are BIB designs
and PBIB designs. The basic procedure is based on the number-theoretic and
combinatorial approach. Comprehensive and useful results on combinatorics
are obtained. Several methods of construction are also newly presented with
practical affine resolvable block designs.

Key results

Lemma 1. In an affine a-resolvable BD(v,b = St,r = «t, k) with the
incidence matrix N, the matrix N'N has eigenvalues rk, k{1 — (« —1)/(5 — 1)}
and 0, with multiplicities 1, b — ¢ and ¢ — 1, respectively.

Lemma 2. In a 2-associate PBIB design, having the incidence matrix N,
with parameters v, b, r, k, \;, 0;, pi;, © = 0,1,2, where \g = 7,00 =71k, po =1, 61
and 0y are the nonnegative eigenvalues (other than rk) of NN’ with respective
multiplicities p; and py, when 67 > 0 and 6 > 0, the design does not possess a
property of affine a-resolvability.



Theorem 1. Let N be the v x b incidence matrix of an affine a-resolvable
2-associate PBIB design with parameters v,b = 0t,r = at, k, A1, Ao, 1 = k(o —
1)/(B—1) and g2 = k? /v, and further let 6; be eigenvalues of NN’ with multi-

plicities p;, i = 0,1,2, where 6y = rk and pg = 1. Then

(i) when 61 > 0 and 03 =0, ¢ = k — 61 and b =t + p; hold;
(ii) when §; =0 and 03 > 0, ¢ =k — 63 and b =1t + ps hold.

Affine a-resolvable SGD designs

Theorem 2. The existence of an affine a-resolvable SGD(v = nv*,b =
b* = Bt,r = r* = at,k = nk*, A\ = 1r*, M2 = X;m = v*,n = n) with ¢ =
nk*(a—1)/(8—1) and g2 = n(k*)?/v* is equivalent to the existence of an affine
a-resolvable BIB(v*,b* = ft,r* = at, k*, \*) with ¢f = k(e —1)/(8 — 1) and

@ =k /v.

Theorem 3. The parameters of an affine a-resolvable SGD design are
given by v = mn,b=03(m—-1)/(8—1),r =a(m—1)/(8—-1),k = amn/B, 1 =
a(m—1)/(8-1), A2 = a(am—pB)/[B(B-1)];t = (m—1)/(B—1),¢2 = o’ mn/?,

where am/[ is an integer.

Table 1. Affine resolvable SGD designs
No. ™ n v b v E | 2 | a2 Source 1 Source 2 Reomark
1 1 2 8 6 3 1 3 1 2 Ki+{2} S6
2 4 3 12 6 3 6 3 1 3 K1+4+{3} S27
3 4 4 16 6 3 8 3 1 4 K1+4{4} 561
4 4 5 20 6 3 10 3 1 5 Ki1+{5} S106
5 4 6 24 6 3 12 3 1 6 Ki1+{6}
6 4 7 28 6 3 14 3 1 7 K1+{7}
7 4 8 32 6 3 16 3 1 8 K1+{8}
8 4 9 36 6 3 18 3 1 9 K1+{9}
9 4 | 10 40 6 3 | 20 3 1 10 K1+{10}
10 6 2 12 10 5 6 5 2 3 Non-E BIB(6, 3,2) + {2} 01
11 6 4 24 10 5 12 5 2 6 Non-E BIB(6, 3,2) + {4} 01
12 6 6 36 10 5 18 5 2 9 Non-E BIB(6, 3,2) + {6} 01
13 8 2 16 | 14 7 8 7 3 4 K5+4+{2} S63
14 8 3 24 | 14 7 | 12 7 3 6 K5+4{3}
15 8 4 32 14 7 16 7 3 8 K5+{4}
16 8 5 40 14 7 20 7 3 10 K5+{5}
17 9 2 18 12 4 6 4 1 2 K6+{2} S37
18 9 3 27 12 4 9 4 1 3 K6+{3} S91
19 9 4 36 12 4 12 4 1 4 K6+{4}
20 9 5 45 12 4 15 4 1 5 K6+{5}
21 9 6 54 12 4 18 4 1 6 K6+{6}
22 10 2 20 18 9 10 9 4 5 Non-E BIB(10,5,4) + {2} 01
23 10 4 40 18 9 20 9 4 10 Non-E BIB(10,5,4) + {4} 01
24 12 2 24 22 11 12 11 5 6 Ki12+4{2}
25 12 3 36 22 11 18 11 5 9 K12+4{3}
26 14 2 28 26 13 14 13 6 7 Non-E BIB(14,7,6) + {2} o1
27 15 3 45 21 7 15 7 2 5 Non-E Non-E o2
28 16 2 32 20 5 8 5 1 2 K17+{2} S74
29 16 2 32 30 15 16 15 7 8 K18+{2}
30 16 3 48 20 5 12 5 1 3 K17+{3}
31 16 4 64 20 5 16 5 1 4 K17+4+{4}
32 16 5 80 20 5 20 5 1 5 K174+{5}
33 18 2 36 34 17 18 17 8 9 Non-E BIB(18,9,8) + {2} 01
34 | 20 2 40 | 38 | 19 | 20 19 9 | 10 K254{2}
35 25 2 50 30 6 10 6 1 2 K28+{2} S121
36 25 3 75 30 6 15 6 1 3 K28+{3}
37 25 4 100 30 6 20 6 1 4 K28+{4}
38 27 2 54 39 13 18 13 4 6 K30+{2}
39 36 2 72 42 7 12 7 1 2 Non-E Non-E o3
40 40 2 80 52 13 20 13 3 5 Non-E BIB(40, 10, 3) 7 o4
41 49 2 98 56 8 14 8 1 2 K404{2}

One characterization theorem and three construction methods of affine a-
resolvable SRGD designs are given with some table.
made for affine a-resolvable Lo designs with some table.

Similar discussions are
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BALANCED FRACTIONAL 3™ FACTORIAL DESIGNS
OF RESOLUTIONS R({10,01}US Q)

Eiji TANIGUCHI (International Institute for Natural Sciences)
Yoshifumi HYODO (Graduate School of Informatics, Okayama University of Science)
Masahide KUWADA (Graduate School of Engineering, Hiroshima University)

We consider a balanced fractional 3” factorial (3”-BFF) design 7 derived from a simple array
SA(m{ A;;, }) with N assemblies (or treatment combinations), where the three-factor and
higher-order interactions are assumed to be negligible and m>4. Let (7) be an Nix1 observation
vector based on 7. Then the ordinary linear model is given by Y 7)= £,@ +e;, where E; is the
Nx (m) design matrix, @ is the »(m)x1 vector of the non-negligible factorial effects up to the
two-factor interaction, and eris an A1 error vector with mean Oy and variance-covariance matrix
oly. Here W m=1+2n7 and @=(0y'; 60'; 6 0x'; 6,'; 64 ). The normal equations for
estimating @ are given by M@= E;'y(T), where M,(= E;'E;) is the information matrix of order
m).

Let T be an SA(m'{/l,O,l,2 1), then M, associated with T is given by

aay, biby ryt(aaz, bbz) Ul”z uh (”1”2 Ui)
=2 22K, D; +2 22Ky

aa bhby y U W i j
where &% (3=0,1,2) and x£*"* are given by some linear combinations of A;;,. Thus
M:; is isomorphic to the symmetric matrices ||x;****||(= K,, say) for »=0,1,2 and ||x #*""||(= K,

say). The aja-th row block and the bib,-th column one of DOf@®A%) are concerned with
Amzan) g and ACh4R) g, respectively, and the uup-th row block and the vyve-th column
one of Dj“*""%) are also concerned with A;44% g, and A%"*"*%) g, , respectively.

The resulting array given by lnterchanglng all of the symbols 0 and 2 of an SA(M{4,,,}) is
also the SA(M{ Ax ks 3), Where Ay s = Aiis » and it is briefly denoted by (0,2)-ISA. Let K, and
/?ﬁ (6=0,1,2,f) be, respectively, the irreducible representations of AM; and M, associated with
7 and 7 with respect to the ideals of the MDR algebra, where 7 and 7 are an SAM{4,i,})
and its (0,2)-ISA, respectively. Then we have the following:

Lemma 1. Let 7 and 7 be an SAM{4,;;,}) and its (0,2)-ISA, respectively. Then the
relations between K; and K, (#=0,1,2,f) aregivenby Kj,=A,;K;A,, where Ay=diag[1;-1;1;1;1;
-1], 4A=diag[1;1;-1], 4,=1and A4,=diag[-1;1;1;1;-1;-1].

A necessary and sufficient condition for a parametric function C® of @ to be estimable for
some matrix C of order W(m) is that there exists a matrix X of order »(m) such that X\, =C.
If C® is estimable, then its BLUE is given by CO, where @ is a solution of the normal
equations, and its variance-covariance matrix is given by o*XM X . We impose some
restrictions on C such that it is given by some linear combinations of D} ®2>>) and Dﬁj‘“l“”””,
and hence we define C as follows:

C: D§a010)+ D?M(LO;[O)_'_ Dg(Ol,Ol)_'_ DZEOl,Ol)_'_Z*Z*Z* gyalaz,blbz Df(aiaz,hbz) +Z*z*z g;,litb A D:J(Lth WViV32) ,
where g®4% and g#“"%"* are some constants. Similarly we define X as follows:
X=33 zzalaz by D#(alaz bib) 4 >3 Zl ez D#(Uluz V1Vz

aa bbby W Ui j
where y/#%% and y#“"* are also some constants. Then C and X are isomorphic to 7}

and y; (£=0,1,2f), respectively. Thus XM,=C is also isomorphic to y,K,=1}.

Lemma 2. If N<y(m), then theindices 4,,;, of an SA hold that A4;;,=0 for (ioi1iz)= (pm-p0) (1

<p<m),(0gm-q) (1<g<m), (m-ror) (1<r<m),(11m-2),(m-211), (1m-21).



Theorem. Let T bean SA(m {4, }), then we have

Ks=(Ds Fs Ag) (D F5A)" for p=0,1,2.f,
where D, and A, arethe diagonal matrices whose diagonal elements are non-zero, and F; are
some matrices whose elements corresponding to 4;;,;, aregiven by only its sufficesio, i1 and i».
Theorem A. There does not exist a 3™-BFF design of resolution R({10,01,20,02}|Q2) derived from
an SA(M{ i, 20 and A;;;, =0 for (4 4 &)= (pm-p0) (1<p<m),(0gm-g) (1<q<m),(m-rOr)
(1<r<m),(11m-2),(m-211),(1m-21)}) with N<v(m).

Theorem B. Let T be an SA(m;{4;,,;, 20 and A4;;,=0 for (4 £ 4)=(pm-p0) (1<p<m), (Ogm-q)
(1<g<m),(m-r0r) (1<r<m),(11m-2),(m-211),(1m-21)}) with N<v(m). Then there exists only the
3“-BFF design of resolution R({10,01,20,11}| Q) derived from the SA(M=4;{ A310= Ao13= 4220

=Ao2o= Aot Aot =l and 4, =0 for (4 £ 4)=(310),(013),(220),(022),(112),(211), (121)}).

Theorem C. There does not exist a 3™-BFF design of resolution R({10,01,02,11}|Q) derived from
an SA(M{ i, 20 and A;;, =0 for (4 4 &)= (pm-p0) (1<p<m),(0gm-g) (1<q<m),(m-rOr)
(1<r<m),(11m-2),(m-211),(1m-21)}) with N<v(m).

Theorem D. There does not exist a 3™-BFF design of resolution R({10,01,20}|Q2) derived from an
SA(M{ Ay, 20 and iz, =0 for (4 4 4)# (pm-p0) (1<p<m),(0gm-q) (1<q<m)(m-r0r)
(1<r<m),(11m-2),(m-211),(1m-21)}) with N<v(m).

Theorem E. There does not exist a 3™BFF design of resolution R({10,01,02}|Q) derived from an
SA(Mi{ Ai,;i, 20 and A, =0 for (4 £ £)= (pm-p0) (1 <p<m),(0gm-q) (1<q<m),(m-rOr)
(1<r<m),(11m-2),(m-211),(1m-21)}) with N<v(m).
Thearem F.  There does not exist a 3"-BFF design of resolution R({10,01,11}|Q) derived from an
SAM{ A, 20 and A, =0 for (4 £ £)= (pm-p0) (1 <p<m),(0gm-q) (1<qg<m),(m-rOr)
(1<r<m),(11m-2),(m-211),(1m-21)}) with N<v(m).

Theaem G. Let T be an SA(M,{4,,;, 20 and A,,;,=0 for (4 £ 4)=(pm-p0) (1<p<m), (Ogm-q)
1<g<m),(m-r0r) (1<r<m),(11m-2),(m-211),(1m-21)}) with N<v(m). Then a necessary and
sufficient condition for T to be a 3™BFF design of resolution R({10,01}|Q) is that one of the
following holds:
() When m=4, (i) 4.,=1, and furthermore
(1) Aos1=As01= Aozt 421=1 and 4
(0,2)-1SA, or
(2) Ao1a=Aso=An=land A, =0 for (4 4 £)=(013),(310),(112),(121), or its (0,2)-ISA,
(i) 1< 130, Aos1s Aross 4301 <2, @nd furthermore
(1) Aot A=l Ay, =0 for (4 4 £)#(130),(031),(103),(301),(112), (121) and Ayz0+ Aosst Asos
+A301<5, or its (0,2)-1SA, or
(2) A220= 202271, Aigi, =0 for (4 £ £)#(130),(031),(103),(301),(220), (022) and Az0+ Agas*Aos
+A301<5,
(i) A30=Aios= A220= Ao02= 1o+ Aois+ A42i=1 and 4, =0 for (4 £ £)=(130),(103),(220),(202),
(112),(211),(121), or its (0,2)-ISA, or
(V) 1< A0, Ao13, As10: os<2 @nd  Aysot g1zt Asiot Ao <5, and furthermore
(1) Ao+ Asn+t =1 and A, =0 for (4 4 £)+#(130),(013),(310),(103),(112),(211),(121), or its
(0,2)-1SA, or
(2) Aozo=Asp=land A, =0 for (4 £ £)=(130),(013),(310),(103),(022),(202), or its (0,2)-ISA,
(I1) when m>4, 4 10, Aoma1s Aormas Ama10s omas Ama012 1y Aigii, =0 for (4 £ £)#(1m-10),(0m-11),
(01m-1),(m-110),(10m-1),(m-101) and Ay 10+ dom-11+ Aormat Amazot Aioma ¥+ Ama01<2M.

=0 for (i i &)= (031),(301),(112),(211),(121), or its

iohiz

ioiz

ioitiz
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Bt & Conic D3LH & Balanced Array

WIRRY: et el R
BB BT A T

1 [XU&HIC

q ZFBNET 5, WEFH PG(2,q) LD kOS> % 2EAT, ZOIBLED I+ 1 HbHE
—ER LBV E I RBDE (k,d)-arc L0\, d =2 D& FIFFHT k-arc &\, HEEE LD
conic I (¢ + 1)-arc TH %,

SZsDL Y FNDSR2EALL. S %2 S LOTRTDERITLRY PVDOEGLET S, Nk
FEs A 3L N D527 3 & & A 2 S t OBFBS (balanced array) EWO, BA, (N, k,s,t)
D EHITEL:

L ED IS5 BEAMINC BT H, (D a € S DT E LT g BN S,
2 (DAY b L a € St OBSHTHT BH 0 12OVT, jipa) = pa DI 1O,

TRTDacSITH LT ug=pThHs &, B A ERRIERS,
DIFcld, 8P FDH 25 P 285 TRTD conic DEA L, H P 2856 0T RTOER
DELGRTVZHICKD, BX 2 0EFRIINESNEHEZRT,

2 conic &2 BERDEZHEE

FHEEVH PG(2,q) FOR PIZR L. CZBM P ZEETRXTD conic DEGE L, LZ PRES K
WTRTOEMDES LTS, C D conic DEUL [C] = ¢*(¢+1)(¢g—1) THY . |L]|=¢* TH S, L
DEZD 2B LN L L & afflDRTEbD, 0l & DT DS C D conic DEL
Z s (1) TERTDBDET 2, Thbb, nagl,lz) ={CeC:|CNli|=a,|CNiy| =G}
ET %, BINTIE pap(l,l2) 2RO Z7c0IC, BEIECTHL &l DX R 2% &3 Lo
BWEZLIGATITL, Il L ORHDOMEBDIZNZE N o, B TH 5 X 9 % conic DEAZEED,
ZDEFDMELIC OV TOMIEZINZEL TS, KHRZ L L L, DRFREL, CRZ R%Z5CD
conic 5% 28 G, Cp % R%ZWS %\ C D conic o R 2HELT 3,

WELC ={CeCr:|Cnh|=2,CNiy|=2} ELEEE, |Ci|]=1q(¢g—1)(¢—2)(¢—3) T
b5,

WE2C={CcCr:|CNI|=2,]CNIy| =2} ELEEE, |G| =q(qg—1)(g—2) TH 2,
WE3C;={CeCr:|CNUL|=2,|CNl|=1} ETBE. |Cs] =39(g—1)(¢—2) TH 5,
WEA4C, ={CcCr:ICNIL|=2,|CNly| =1} ETBE, |G| =q(g—1) TH 2,
WES5C={CecC:|CNlL|=2CNly=0} T2, |Cs|=1%(q—1)?Th5,

BE6Co={CcC:|CNL|=1]CNl|=1} F3L. |C|=qlg—1) TH 3,



WETC,={CeC:|ICNL|=1,CNl=0} TBE, |Ci|=3¢*(q—1) TH 2,

BESC={CecC:CNl=0,CNly=0} 5%, ZDLE,
Th 5,

Cs| = $(g+ D)alqg —1)(q — 2)

3 FEYI & DX

HWE 125 8ILBLTRENEZZNZEND conic DIAEUZ. ] Ry DEXFICL S 2WVENS 2
5, £oT, ROIIICRHEZHHOHEFICES FHICL D, HFETIIMES NS,
A%N kS (aij) E95, 2IT,

a;; =|C;NY|, C;€Cand [; € L

ETB, ZDLE, A DITOEIZC D conic DEIZZEL L, Floid L DEBROKEL S, XoT,
N=q¢q+1)(¢g—1) THH, k=g Ths, #1268 kb, UTOEHENIZZ 2,

R 9 LA A BRI BAL¢ (g + 1)(g — 1).4%3.2) THY

1(g+1Dglg—1)(g—2) if (o, B) = (0,0) or (2,2),
(@7 Lg2(g — 1) ifa—pg= 2,
q(q—1) if (o, B) = (1,1).
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Single-Change Covering Designs

W. D. Wallis, Southern Illinois University

Given positive integers v, k and A, a (v, k, \)-covering design is a collec-
tion of k-subsets (blocks) of a given v-set V' in which every pair of elements
of V occur together in at least A of the blocks.

An ordered (v, k, \)-covering design or OC(v, k, \)is a (v, k, \)-covering
design together with a way to order the blocks of the design.

Suppose the blocks of an ordered covering design are (in order) By, By, ..., By,.
The cost of B; (i > 1) is ¢,
Ci = |Bz'\Bz'—1|;

that is, the cost is the number of changes from the preceding block. The cost

of S is defined to be .
c(S) = Z Ci .
i=2

Ordered covering designs arise in the testing of electrical components
for compatibility. The testing device takes several components and tests
them simultaneously, so a block consists of the set of components which
are tested together. The test is electrical, and the cost is negligible; but
the (mechanical) insertion and removal of components has a signficant cost
(in terms of operator time). For this application, low-cost ordered covering
designs are needed.

We define ¢(v, k) to be the minimum, for all OC(v, k, 1)-designs S, of
c(S). We would like:

(i) to find c(v, k);
(i) to find an OC(v, k, 1), call it S = S(v, k) such that ¢(S) = c(v, k);

1



(iii) if (i) or (ii) cannot be achieved, to find a lower bound on ¢(v, k) and
to find a design S such that ¢(9) is close to the bound, for given v and
k.

Suppose an OC/(v, k, ) contains the successive blocks

By = {a1, as, ..., Ge_1, Qc, T1, T, ..., Tq}
Bc = {bl, bQ, Ce bcfl, bc, L1y, T2y ooy Q?a}.
The total cost is unchanged if we insert between these two By, Bs, ..., B._1,
where
Bi = {bh bg, ey bi7 ity ooy Qey 1y T2y + v vy xd}.

In other words, given any OC(v, k, \), there will be an OC (v, k, \) of the
same cost in which each block has cost 1. We call such a design a single change
covering design. (SCCD) So we concentrate on single change OC(v, k, 1)s.
If one has b blocks, denote it by SC(v, k, b), or just SC(v, k). Usually
discuss f(v, A) = c(v, A\) + 1, the minimum number of blocks, rather than
the minimum cost.

Trivially, the addition of I — k new elements to every block of an SC(v +
k, k, b) results in an SC'(v + 1, [, b). So:

Lemma 1. f(v+k, k) > f(v+1, 1) when k <.

Lemma 2. The number of blocks in an SC(v, k) is at least

wen=[{()- (Do o

We call an SC(v, k) economical if it attains the bound (1). We say case
(v, k) is tight (TSCCD) if k — 1 divides (3) — (’;) In this case, denote the

design T'SC((v, k). If the number of blocks is b, then

(g) - (’;) — (b—1)(k—1).

Theorem 1. There is an economical SC(v, 3) for all v > 3.

This theorem shows that f(v, 3) = m(v, 3) for all v > 3. This is not true
in general: for example, economical SC(v, k) do not exist in the tight cases
v=26,7,9, for k =4.

In this talk we shall prove some of these results and indicate some direc-
tions for further research.



Decomposing complete graphs into sun graphs of n-cycle

Chin-Mei Fu
Department of Mathematics, Tamkang University
cmfu@mail.tku.edu.tw

Let G be a graph with at least three vertices and suppose V(G) = {w, V2, V3,..., Vn}.
Add n new vertices {wi, W, Ws,..., Wy} to G together with edges {vi,wi}, for 1 <i<n.
The resulting graph on 2n vertices is called a sun graph of G, denoted by S(G). (Note
that degsgw; = 1 for all i, 1 < i <n.) Asun graph of n-cycle, S(Cy), is a graph with 2n
vertices vi, Vo, Vs, ..., Von and 2n edges {vi, o}, {Vo, vz}, ..., {Vn, i}, {V1, Vhs1}, {\2,
Vet «ooy Vo, Von}, 1.6. S(Cy) is the union of one n-cycle C, and one 1-factor. A
graph G is decomposable into subgraphs Hi, Hy, ..., Hnof Gifno Hi(i=1, 2, .., n)
has isolated vertices and the edge set E(G) can be partitioned into the subsets E(H1),
E(H), ..., E(Hn). If Hi= S(C,) for all i, then G is called S(C,)-decomposable.

First we consider n = 3.

A sun graph of 3-cycle, SCs), is a graph with six vertices vi, Vo, Vs, V4, Vs, Vg and
edges {vi, o}, {Vo, v3}, {Vv3, i}, {w1, Va}, {V2, 5}, {V3, s} which is formed a 3-cycle
(v1, V2, v3) and a 1-factor {{vi1, va}, {V2, 5}, {V3, V6}} , thus we denote it as [(v1, V2, V3),
Vs, Vs, Vg]. Since S(Cs) is a tripartite graph, we will consider what is the necessary and
sufficient condition such that the complete tripartite graph Kpqr can be
S(Cn)-decomposable. First we obtain that if K,qr is S(Cs)-decomposable then 6 |

(pg+qgr+pr) and r= max{%,ﬁ}. Then we get the necessary and sufficient condition
+

for the complete tripartite graph K, ..

p

Theorem 1. K, is S(Cs)-decomposable if and only if gs r s% and one of the

following condition holds:
(1))p=0mod6. (2)pandr=2mod6. (3)pandr=4mod6.
By using Theorem 1 and the construction of Steiner triple system, we prove the
following results.
Theorem 2. K, is S(C3)-decomposable if and only if n=0, 1, 4, 9 (mod 12).

After this, we try to embed a Steiner triple system into S(Cs)-system.
Theorem 3. A Steiner triple system of order 6m+1 can be embedded into S(C3)-system
of order 12m+1.



Next, we consider n = 4,

A sun graph of 4-cycle, Cy,), is a graph with eight vertices vi, Vo, V3, V4, Vs, Vg, V7,
vg and edges {vi, Vo}, {V2, s}, {Va, Va}, {Va, i}, {v1, s}, {V2, Ve}, {Vv3, V7}, {4, V&}
which is formed a 4-cycle (v1, Vo, V3, V4) and a 1-factor {{vi, vs}, {V2, V6}, {V3, W7}, {V4,
Vg}}, thus we denote it as [(vi, V2, V3, Va), Vs, V6, V7, Vg]. Since S(C,) is a bipartite graph,
we will consider what is the necessary and sufficient condition such that the complete
bipartite graph K can be S(C4)-decomposable. First we obtain the following results:
Theorem 4. Let p and q be integers greater than or equal to 4 and p>q. Kpq is
S(C,)-decomposable if and only if 8 | pq except g=4, p =2(mod 4), q = 5.

From this decomposition we can get the following result.
Theorem 5. K, is S(C4)-decomposable if and only if n=0, 1(mod 16).

In this talk, 1 will show the construction of each theorem. In the follows, one can
show the extension of these results to n > 4.



Hamilton Cj-Trefoil Designs

Kazuhiko Ushio
Department of Informatics
Faculty of Science and Technology
Kinki University

Let K, denote the complete graph of n vertices. The complete multi-graph MK, is the complete
graph K, in which every edge is taken A times. Let Cj be the k-cycle (or the cycle on k vertices).
The Cy-trefoil is a graph of 3 edge-disjoint C}’s with a common vertex and the common vertex is
called the center of the Cy-trefoil. In particular, a Cy-trefoil satisfying n = 3(k — 1) 4 1 is called
the Hamilton Cj-trefoil because the Ci-trefoil spans AK,.

When MK, is decomposed into edge-disjoint sum of Hamilton Cy-trefoils, we say that AK, has
a Hamilton Cy-trefoil decomposition. This Hamilton Cj-trefoil decomposition of MK, is called a
Hamilton Cy-trefoil design.

Theorem 1. If AK,, has a Hamilton Cj-trefoil decomposition, then (i) n = 3(k — 1) + 1 and (ii)
A =0 (mod k) for odd k, A =0 (mod k) for k=0 (mod 4), A =0 (mod k/2) for k =2 (mod 4).

Theorem 2. If MK, has a Hamilton Cy-trefoil decomposition, then (sA)K, has a Hamilton
Cj-trefoil decomposition for every s.

Theorem 3. Let n be prime. When n = 3(k—1)+ 1, A =0 (mod k), and k odd, AK,, has a
Hamilton Cy-trefoil decomposition.

Example 3.1. Hamilton C3-trefoil of 3K7.

(n,g) = (7,3) n-orbit: 1,3,2,6,4,5,1.

H=(7,1,3) U (7,2,6) U (7,4,5).

This starter comprises a Hamilton Cs-trefoil decomposition of 3K7.

Example 3.2. Hamilton Cs-trefoil of 5K;3.

(n,g) = (13,2) mn-orbit: 1,2,4,8,3,6,12,11,9,5,10,7, 1.

H = (13,1,2,4,8) U (13,3,6,12,11) U (13,9,5,10,7)

H = (13,2,4,8,3) U (13,6,12,11,9) U (13,5,10,7,1).

These 2 starters comprise a Hamilton Cs-trefoil decomposition of 5K73.

Example 3.3. Hamilton Cr-trefoil of 7Kg.

(n,g) = (19,2) n-orbit: 1,2,4,8,16,13,7,14,9,18,17,15,11,3,6,12,5, 10, 1.
H = (19,1,2,4,8,16,13) U (19,7,14,9,18,17,15) U (19,11,3,6,12,5,10)

H = (19,2,4,8,16,13,7) U (19,14,9,18,17,15,11) U (19,3,6,12,5,10,1)

H = (19,4,8,16,13,7,14) U (19,9,18,17,15,11,3) U (19,6,12,5,10,1, 2).
These 3 starters comprise a Hamilton C7-trefoil decomposition of 7K.

Example 3.4. Hamilton Cq;-trefoil of 11K3;.

(n,g9) = (31,3) mn-orbit : 1,3,9,27,19,26, 16,17, 20,29, 25,13,8, 24, 10, 30,28,22,4,12, 5,15, 14,
11,2,6,18,23,7,21, 1.

5 starters comprise a Hamilton C71-trefoil decomposition of 11K3.

Example 3.5. Hamilton Ci3-trefoil of 13K37.
(n,g9) = (37,2) mn-orbit : 1,2,4,8,16,32,27,17, 34,31, 25,13, 26, 15, 30, 23,9, 18, 36, 35, 33,29, 21,



5,10,20,3,6,12,24,11,22,7,14,28,19, 1.
6 starters comprise a Hamilton C;3-trefoil decomposition of 13K37.

Example 3.6. Hamilton Ci5-trefoil of 15K,3.

(n,g) = (43,3) n-orbit: 1,3,9,27,38,28,41,37,25,32, 10, 30,4, 12, 36, 22, 23, 26, 35, 19, 14,42, 40,
34,16,5,15,2,6,18,11,33,13,39,31,7,21,20,17,8,24,29, 1.

7 starters comprise a Hamilton Cq5-trefoil decomposition of 15Ky3.

Example 3.7. Hamilton Cy;-trefoil of 21Kg;.

(n,g) =(61,2) n-orbit: 1,2,4,8,16,32,3,6,12,24,48,35,9,18,36,11,22,44,27,54,47, 33,5, 10, 20,
40,19, 38,15, 30,60, 59,57, 53,45, 29, 58, 55, 49, 37,13, 26, 52,43, 25,50, 39,17, 34,7, 14, 28,56, 51, 41,
21,42,23,46,31, 1.

10 starters comprise a Hamilton Cs-trefoil decomposition of 21 K.

Example 3.8. Hamilton Cy3-trefoil of 23Kg7.

(n,g) = (67,2) n-orbit: 1,2,4,8,16,32,64,61, 55,43, 19, 38,9, 18, 36, 5, 10, 20, 40, 13, 26, 52,
37,7,14,28,56,45,23, 46, 25, 50, 33, 66, 65,63, 59,51, 35, 3,6, 12, 24, 48, 29, 58,49, 31, 62, 57,
47,27,54,41,15, 30,60, 53,39,11,22,44,21,42,17,34, 1.

11 starters comprise a Hamilton Cos-trefoil decomposition of 23 Ky7.

Example 3.9. Hamilton Cy5-trefoil of 25K73.

(n,g) = (73,5) n-orbit : 1,5,25,52,41,59,3,15,2, 10, 50,31, 9,45, 6, 30,4, 20, 27,62, 18,17,
12,60, 8,40, 54,51, 36, 34,24,47,16,7, 35,29, 72, 68,48, 21, 32,14, 70,58, 71,63, 23,42, 64, 28,
67,43,69,53,46,11,55,56,61, 13,65, 33,19, 22,37, 39, 49, 26, 57, 66, 38,44, 1.

12 starters comprise a Hamilton Cos-trefoil decomposition of 25K73.

References

[1] K. Ushio, G-designs and related designs, Discrete Math., Vol. 116, pp. 299-311, 1993.

[2] K. Ushio, Bowtie-decomposition and trefoil-decomposition of the complete tripartite graph
and the symmetric complete tripartite digraph, J. School Sci. Eng. Kinki Univ., Vol. 36, pp.
161-164, 2000.

[3] K. Ushio, Balanced bowtie and trefoil decomposition of symmetric complete tripartite di-
graphs, Information and Communication Studies of The Faculty of Information and Communi-
cation Bunkyo University, Vol. 25, pp. 19-24, 2000.

[4] K. Ushio and H. Fujimoto, Balanced bowtie and trefoil decomposition of complete tripartite
multigraphs, IEICE Trans. Fundamentals, Vol. E84-A, No. 3, pp. 839-844, March 2001.

[5] K. Ushio and H. Fujimoto, Balanced foil decomposition of complete graphs, IEICE Trans.
Fundamentals, Vol. E84-A, No. 12, pp. 3132-3137, December 2001.

[6] K. Ushio and H. Fujimoto, Balanced bowtie decomposition of complete multigraphs, IEICE
Trans. Fundamentals, Vol. E86-A, No. 9, pp. 2360-2365, September 2003.

[7] K. Ushio and H. Fujimoto, Balanced bowtie decomposition of symmetric complete multi-
digraphs, IEICE Trans. Fundamentals, Vol. E87-A, No. 10, pp. 27692773, October 2004.

[8] K. Ushio and H. Fujimoto, Balanced quatrefoil decomposition of complete multigraphs, IEICE
Trans. Information and Systems, Vol. E88-D, No. 1, pp. 19-22, January 2005.

[9] K. Ushio and H. Fujimoto, Balanced Cy-bowtie decomposition of complete multigraphs, IEICE
Trans. Fundamentals, Vol. E88-A, No. 5, pp. 1148-1154, May 2005.

[10] K. Ushio and H. Fujimoto, Balanced Cy-trefoil decomposition of complete multigraphs, IE-
ICE Trans. Fundamentals, Vol. E89-A, No. 5, pp. 1173-1180, May 2006.



A construction of a cyclic SQS(2p) for prime p
PR ARARY G EREEIZERE IR R —

AL TR, WREBEp IS, Zop DT RTOD unit % multiplier & L THD&K MY Steiner quadruple
system DRERIEIZOVWTHEZ B,

V z o MOEHRD»S % 5 HRES (EHE LA (point) LWEE) L L. Bz V D4 %EARE (1B =0,
PiFE% block L) L35, ZOLE, EEORL S 3 KD, 72721 20 block 1B 3 X9 7 (V,B) Dl

% Steiner quadruple system (SQS) EFFON, SQS(v) £ #FH <. 7 SQS BHET 27D DEMIE, v =24
(mod 6) TH 5%,

SQS(v) (V,B) 12 S v O H CRIBZH o BMEET 5 & Z. cyclic SQS &9, (V,B) 2% cyclic SQS
DEEVZZycZr—x+]1 (modv) £ETBIENTES, £/ G % SQS OHCFEBBEOIIREE §
% & &, block orbit orbg(B) = {B¢ | g € G} % B ® G-orbit L3, KfZ G = (o) DEE, orb,(B) %
HiZ orb, (B) L3 E, cyclic orbit EMES, |orb, (B)|=v D& &, orbit X full TH B L WVH, 51T, T
T D cyclic orbit 23 full TH % & 9 7% SQS % strictly cyclic £ TH 2 &\, sSQS EFH L, F 7 orbit
DRFEIC% base block &ML,

Z, L® cyclic SQS(v) ILBWT, fEED Be BIZWLTaB e BThs z € Z, % multiplier £\ 9,
FeIEHE 2 DT X TOEFED multiplier & %% & &, SQS ¥ Hol(Z,)-invariant TH 5 L9, 2L,
Hol(Z,) = Zy x Aut(Z,) Th . G = Hol(Zy) £ ¥ 5.

7B 12H Kohler [1]. Siemon [2-6]. Bitan & [7]. Chu & [8]. Feng & [9] IZ & % cyclic SQS. sSQS
DRERITIEDE 2 5T 58, ARG TIlE, Hol(Zy,)-invariant sSQS(2p) (p (3%, p=1,5 (mod 12))
DRI D WTEZ B,

WOEARV =29, £ 55, Zoy~Zy Z,={(z,y)|x€Zo,ycZ,} EEITZDT.V, ={(z,y) |y €
Z,} £95E.V=WUV, £TE3, £V EOMEZ (z,y)+ (@, y) = (z+2,y+y') (mod (2,p)).
Lz (z,y)(2,y) = (za,yy’) (mod (2,p)) LEET 2, TDEZE, SQS D block (XD 3 FEHIC IS
na,

Type 1: Voo Vi D 2 g9 0557 % block
Type 2 : Vo. Vi D—/26 35, I —HAD 1 HH»57% % block
Type 3: Vo b LKIE V] D4 5D 67% % block

7R UARRE TIE, Type 3 IZERA L. Type 1 & Type 2 DA T SQS #MK T %, %7 block D%
BRI (1,0) ZMATTE % block & SQS D block 2% 5%, L7dio>T, Vo. Vi 2XAIT % HEH
v, KT Type 1 @ block {(0,a1),(0,a2),(1,b1),(1,b2)} Z. {a1,a2;b1,b2} EMEEIL . Type 2 D block
{(0,a1),(0,a2), (0,as), (1,b1)}. {(1,a1),(1,a2),(1,a3),(0,b1)} Z. {a1,a2,a3;b1} EMEELT 2, F 7AW
TlZ, Type 2 ? base block I3 1 D2 LD FEL RV ERET S,

2512 {0,1,a} = {(,0),(z,1),(z,a)} % pure triple £W-*, {0,1;b} = {(z,0),(z,1),(z +1,b)} %
mixed triple & W5, 77 L, 2 €%y £ T35,

Z T, %79 Hol(Zyp)-invariant sSQS(2p) 287z § N & &M - WHZHEOH THIZAET 5,

iR 1 Hol(Zs,)-invariant SQS(2p) 1 base block {0,1,—1;0} Z¥iD,

& 2 Type 1 @ base block % {0,1;,8} £% %, EL o,81F, 2X2 —2X +1 =0 (mod p) DfE &
35,

TIT2X2-2X+1=0 (mod p) DMEEFFOIDDFEMIE, p=1 (mod 4) THH . SQS DFEELML
AbET, p=1,5 (mod 12) BEF SN2,



%8 3 B=1{0,1,a;b} & Type 2 @ base block £ §5% & &, XA LD,

(i) orbg(B) 2%, pure triple {0,1,2} 7%, 2 =a,1—a,a ", 1—a1,(1—-a) ", 1—(1—a)"! ® 6 flil#F
1Ed %,

(ii) orbg(B) 21, mixed triple {0,1;y} 2%, y = b,1 —b,a”'b,1 —a=1b,(1 —a)~ (1 —b),(1 — (1 —
a)™H(1 —a=tb) D 6 AEFET %,

ZD L E, pure triple D x DR 57D DEMEIIRDEY TH 5,

B4 fiE4 BT, 1-a,a L 1—a7 (1—a) L, 1-(1—a) ! 2N ENEL 57 DICIE e’ —a+1 £ 0
(mod p) THRFIUIZE S R,

a?—a+1=0 (mod p) ¥, p=>5 (mod 12) TEMEFF2 WA, p=1 (mod 12) TIHEEFF>, ZD
72, p=1 (mod 12) TIFRXDHE®D base block Z i & 17 1% 6 e,

fE5 p=1 (mod 12) ® & &, Hol(Zy,)-invariant sSQS(2p) &, (0,1,7;(d + 1)~1) ZR¢Fk% base block
ELTRD, %L, 01k X2 - X+1=0 (mod p) DT 2,

N5 OREICIER L T, Hol(Zsgp)-invariant sSQS(2p) ZilHEMIC L > TRDZE A, p =13 kRS
p <200 DFEE (772 L. p=1,5 (mod 12)) T Hol(Zy,)-invariant sSQS(2p) 23K HIHK 72,

EIE 6 Hol(Zy,)-invariant sSQS(2p) (p IFFE. p=1,5 (mod 12)) i3,
p = 5,17,29,37,41,53,61,73,89, 97,101,109, 113, 137, 149, 157, 173, 181, 193, 197 < % L CIHET 5.

p > 200 DEFICOWTIX, TDXIH % SQS 2B 2 0ICIFFHOEENME I 2 HENH Y | F R
fIZ Hol(Zoy )-invariant sSQS(2p) DHERZ HAZTDH S5 HROBETH %,

SE 3R
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Translation-free Steiner systems and their
application

Yuichiro Fujiwara
Graduate School of System and Information Engineering
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A Steiner t-design of order v, briefly S(t, k,v), is an ordered pair (V,B),
where V' is a finite set of v elements called points, and B is a set of k-element
subsets of V' called blocks, such that each t-tuple of distinct elements of V' is
contained in exactly one block of B. An S(2,3,v) is often called a Steiner
triple system and referred to as an STS(v). For the sake of simplicity, we
assume that V is the set of positive integers less than or equal to v.

A Steiner t-design (V, B) on the point set V' is said to have a translation-
free expression over Z, if for any block B = {a,b,...,c} € Band any i € V
it holds that B+i = {a+i,b+14,...,c+ i} € B, where all elements in
k-tuples are taken modulo w. When w > 2v, we say that the S(¢, k,v) has
a translation-free expression over N. In what follows, we simply say that a
Steiner t-design is translation-free if it has a translation-free expression.

This special property of Steiner systems stems from synthesis of X-tolerant
convolutional compactors, in which translation freeness guarantees better er-
ror detection ability and higher X-tolerance for BIST (Built-in self-test) than
trasitional methods (See Fujiwara and Colbourn [1], Mitra and Kim [2], and
Rajsky and Tyszer [3]).

We focus on excistence of translation-freene S(¢, k,v) over N or Z, for
w > v. By employing a simple probabilistic methods, we asymptotically
solved the case k > 5:

Theorem 1 Let k be an integer greater than or equal to five. Then for every
sufficiently large admissible order v there exists a translation-free S(2,k,v)
over 4,.



It appears to be difficult to settle the case when the block size k is small.
Among other results, we have so far obtained the following recursive con-
struction:

Theorem 2 If there exist a translation-free STS(v — 1) over N or Z, and
a translation-free STS(w — 1) over Z,, then there exists a translation-free
STS(vw — 1) over N or Z,,, respectively.

By using the trivial Steiner triple system of order 3, we have a doubling
construction:

Corollary 3 If there exist a translation-free STS(v — 1) over N or Z,, then
there exists a translation-free STS(2v — 1) over N or Zs, respectively.

Infinitely many translatin-free Steiner systems can be obtained from other
techniques such as trancation of larger Steriner systems having particular
automorphisms. Not a few sporadic examples can be found with the aid of
computers. We do not know, however, the complete spectrum of orders for
which a translation-free S(2, k, v) exits.
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Perfect Hash Families
— Strength Three with Three Rows —

RPRY: ¥ A7 LEWRTAOIER B R
FWRY: > A7 LEWMTAVIER R 1
WPRE ¥ AT LERTAER B vA

1 Introduction
Perfect Hash Family (PHF) & 134 A4 Xk DEFL A 2> 63 A X v DfEils B ~OBIEDEE D H, |H| = N,
T, ROFM% W I 21T 6 e,
o A XDt DIEED A DFIES X 1T, Hopic X THIBRI Nz & & (hx) AR S X9
BB h e H DR LD 1 DHEET 5.
Z OB DES H % Perfect Hash Family &MY, PHF(N;k,v,t) 5L, FlEERIK A, T2 HOD

B, FAIEEZBIBOMEICHIGE T, N v OFFNCERET 2 2 &3k 3.
Bl PHF(3;12,4,2), h;:Z15 — 7y

[ Zi]0 1 2 3 4 5 6 7 8 9 10 11]
h 001112 2 2 3 3 3
hs 02 12 3 103 2 0 1
hs 1 302 11230 0 3

Z DOfTEIE 1980 HEAAJHEIZ, K. Mehlhorn[3] % M. L. Fredman and J. Komlos[2] ¥ N. Alon 7 &'1Z
Lo TRESNEMETH 223, 1 0FREHID»ONES, JVv—7" 7 A, Bok¥x —[Ez &I
R4 FE I, PHF OREEEICH O H 72 > TE /. FFICHGA Walker IT and Colbourn[l] T, %
 DIEREPRRE I N,

2 Bound

PHF(N;,k,v,t) ’FET %, w/ND N % PHFN(k,v,t) £E5L. t =2 DEEIEAWZDT, t > 31
X LT K. Mehlhorn(1982)[3] I2 & > TRD ERIGZ 5T 5,
PHFN(k,v,1) > 108"
log v
Fredman and Komlos(1984)[2] IZ &> T, A LBRI N, EAWICIIZORESITHS, N ZHEL
HAEICE kE<oN L5,

3 B
B hecHOERBZRA VM EAV &L, 7Tuvy /%886 B %
B={B;y |1 <i<|H|, be B}, Bip={a|hi(a)=">}

LEFET S, fHL, h,:A—-B 7%, ZDXIHITHETO Y IDSRDIIATLAERDE, RD
kIR TOATFLLAEE R B,



1. BIREAV LZ20MIEEDHEE) Brok5,
2. Bixai#lah, 20877 A (CHTH) 3V 258LTw3

3. ADITEED t-3oHEE X ITRL, ZOtHOMEBELZZ 7oy Z7IZG&ENTWEPETEBD R L
H—2H %,

2D AT L% t-Separating Resolvable Block Design (t-SRBD) EWFATW 23, KIZ, t =3 TRKDOED
N =30846%2E2 59, ZOGAPIEANRRL/NS Ry —ATH 2, EHEHBOY A XD LRI k<o’
THHD, ZONY Y FiEhkDIEBRENTI D EFIGEY FHS EERINTHuARn,

I 3.1 377 AD 3-SRBD 12757 DRBEAI5AEE, X ITH LT3 2D secant 70 v 7 BHFAET
5 L) REBEBRDOTIES X ZEEL R\,

X 2T % secant 7u vy 7 LlE ADWOELE X L 2R ETRDLE 7Ry 7D ETHL, DM
Zii7. T THA V& PG(4,q) ED Quadrics & PG(3,¢%) LDV v FERkEZ > THRT %, £79
PG(4,q) £ Quadrics, Q(4,q) 1%, PG(4,q) LD s % P = (29, 71,72, 73, 74),7; € GF(q) ERBIL - L &,

2
Ty +T1T2 + 2324 = 0

DEHEG TR D, ZOREMTRIE (@ +1)(g+ 1), EE (2 +1)(¢+ 1) AEET S, 2 L CHB L
g+ 1M, &RIC g+ 1 ERPEST 2MELRE, ERP3AEEES Z L3Ry, 2D Q(4,q) ITFAT
BPHEL 2T UE B 68 wds, BWICZb 6 R WEMORREIE, Q4,3) DEf, FEORRREKT L
v CETFHEICIZ 10 ARBEED) | 2 2T Q(4,q) DRNFR, Q(4,q), 5B A5 L ROFERBE SN,

EE 3.2 EREOFEHARX ¢, ¢ >3 1XNLT, PHFB,¢*(q+1),¢%,3 ) BWHIET 5.

COfERIF ¢ = 3,4 DERICRBIERAIN TR E2HDL D BRZVEREOY A Xk 25250, 20
PULED g loif LT BIEY A X282 %00,
RIZPG(3,¢%) DT Iy FEBRIE, H(3,¢%), Zio7MRiE2EZ 5. H(3,¢°) &

1 1 1 1
et ettt 42l =0

DVOEHEGTRITE S, 2L T(R+1) (P +1)HDEE (q+1)(P+1) ADEMD» 5%, 2D H(3,¢2)
2 5RD PHF R TZ 5,

EE 3.3 [EEOFEHARX ¢ I LT, PHF(3:¢°%,¢%3) D’MFAET 5.

COMBIEEBIER R IN TV T X = TEROEREDT A XK E W,

&
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