
Bump huntingとその顧客データへの応用

廣瀬英雄, 行實隆広 (九州工業大学)

abstract

Suppose that we are interested in classifying n points in a z-dimensional feature

variable space into two groups according to their responses, where each point is

assigned response 1 or response 0 as its target variable. We assume that due to the

messy data structure such that many response 1 points and 0 points are closely

located in the feature variable space, response 1 points are hardly separable from

response 0 points. In such a case, to find the denser regions for response 1 points

could be an alternative to the usual classification problems. Such regions are called

the bumps, and finding them is called the bump hunting. We have developed a

bump hunting method using probabilistic and statistical methods. By specifying a

pureness rate in advance, a maximum capture rate will be obtained. The pureness

rate and the capture rate are illustrated in Fig.1 in terms of true positive, true

negative, false positive, and false negative. Since the smaller the regions to capture

the response 1 dense points, the higher the ratio of the response 1 points to the

total in the regions. Thus, a trade-off curve between the pureness rate and the

capture rate can be constructed; see Fig.1.

図 1: The trade-off curve between the pureness rate and the capture rate in the

bump hunting.

To obtain the optimal trade-off curve, we have developed a new decision tree

method which includes the genetic algorithm; we call this the GA tree. In the



GA tree, the explanation variables to each branching knot are randomly selected,

but the splitting points of the feature variables are determined by using the Gini’s

index. This method intuitively seems to work in simple data structures; however,

it works well also in real complex customer data.

To preserve a good inheritance property in evolution procedure, we have de-

signed our own crossover method in the GA tree. This has caused the existence of

many local maxima for the capture rates. This drawback, however, turns out to

be a nice property to estimate the upper bound for the trade-off curve. We have

used the extreme-value statistics to estimate this upper bound.

As is well known, to assess the the accuracy for the trade-off curve, it is rec-

ommended to apply the test data to the optimally obtained rules by using the

training data. When the number of feature variables is large comparing to the

sample size, the bias between the results using the training data and those using

the test data may become large. To assess the bias efficiently, we have proposed

to use the boostrapped hold-out method in case that the cross validation cannot

be applicable due to the small sample size.

To assess the accuracy for the upper bound of the trade-off curve using the

extreme-value statistics, the results using the test data at the final stage of the

evolution procedure are supposed to be local maxima, as similarly observed using

the training data only. This requires us to apply the test data to the rules obtained

by using the training data at every stage of the evolution procedure. However, such

the test data is no longer responsible for the role of testing; we have to provide

another test data set. Thus, we next proposed a new GA tree; we first classify the

original data into three subsets, the first is for training, the second is for evaluation

to each evolution stage, and the third is for test at the final stage. Using the new

GA tree proposed, we can obtain the upper bound accuracy for the trade-off curve.

Then, we may expect the actually attainable trade-off curve upper bound with its

accuracy. Using this, we will make future decisions by applying the rules obtained

by the training data with the knowledge of how far the rules we are using are

located from the optimal points. In Fig.1, two important curves are shown; one

is the rules using the training data because we have to use these rules in actual

cases, and the other is the estimated curve using the extreme-value statistics with

the test data to know the position we stand.


