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1 Introduction

Empirical likelihood method is one of the nonparametric methods for statistical inference pro-
posed by Owen (1988, 1990). In i.i.d. setting, it is shown that empirical likelihood ratio is
asymptotically chi-square distributed and used for constructing confidence regions for the mean,
a class of M-estimates and so on.

Empirical likelihood method has been applied to many scenes and their applications are also
extended to dependent observations. However it seems that they were mainly for stationary pro-
cesses. Although stationarity is the most fundamental assumption when we are engaged in time
series analysis, it is also known that real time series data are generally nonstationary (e.g., eco-
nomics analysis). Recently Dahlhaus (1996a, 1996b, 1997) proposed an important class of non-
stationary processes, called locally stationary processes. Locally stationary processes have so
called time varying spectral density whose spectral structures smoothly change in time.

In this paper we extend the empirical likelihood method to non-Gaussian locally stationary
processes with time-varying spectral densityg(u, λ). We derive the asymptotic distribution of em-
pirical likelihood ratio based on the central limit theorem for locally stationary processes, which is
seen in Dahlhaus (1997). Especially, when we consider the stationary case, i.e., the time varying
spectral density is independent of time parameteru, the asymptotic distribution becomes chi-
square.

As an application of this method, we can estimate an extended autocorrelation for locally
stationary processes.

2 Setting

We consider an inference problem on a parameterθ ∈ Θ ⊂ Rq based on a stretchX1,T , . . . ,XT,T

where {Xt,T}t=1,...,T is a locally stationary process which has the time varying spectral density
g(u, λ). We suppose that information aboutθ exists through the following time-spectral moment
condition

∫ 1

0

∫ π

−π
φ(u, λ, θ0) g(u, λ) dλdu = 0 (1)

whereφ : [0,1] × [−π, π] × Rq → Cq is an appropriate function andθ0 is a true value ofθ. We
give a brief example ofφ and correspondingθ0 in scalar case. If we set

φ(u, λ, θ) = θ − eiλk,

then (1) leads to

θ0 =

∫ 1

0

∫ π

−π eiλkg(u, λ) dλdu
∫ 1

0

∫ π

−π g(u, λ) dλdu
. (2)

When we consider the stationary case (i.e.g(u, λ) is independent of time parameteru), (2) be-
comes

θ0 =

∫ π

−π eiλkg(λ) dλ∫ π

−π g(λ) dλ
,

1



which expresses the autocorrelation with lagk. So, (2) can be interpreted as a kind of autocorre-
lation with lagk for locally stationary processes.

3 Main Result

Now we set

mj(θ) =

∫ π

−π
φ(u j , λ, θ)IN(u j , λ) dλ ( j = 1, . . . ,M, M = T − N + 1)

as a new estimating function for locally stationary processes. HereIN(u, λ) is a local periodogram
with segment lengthN. Assume that sample sizeT and segment lengthN satisfy the following
relationship

T1/4 � N � T1/2(logT)−1.

We use the following empirical likelihood ratio functionR(θ) defined by

R(θ) = max
(w1,...,wT )


M∏

j=1

Mw j |
M∑

j=1

w j mj(θ) = 0, w j ≥ 0,
M∑

j=1

w j = 1

 . (3)

Then we get the following theorem.

Theorem 1 SupposeX1,T , . . . ,XT,T are realization of a locally stationary process. Under some
regular conditions

−1
π

logR(θ0)
d→ (FN)′(FN)

asT → ∞, whereN is aq-dimensional normal random vector with zero mean vector and covari-

ance matrixI q (identity matrix) andF = Σ
− 1

2
2 Σ

1
2
1 . HereΣ1 is q by q matrix whose(i, j) element

is

(Σ1)i j =
1
2π

∫ 1

0

[∫ π

−π
φi(u, λ, θ0){φ j(u, λ, θ0) + φ j(u,−λ, θ0)}g(u, λ)2 dλ

+c4

∫ π

−π
φi(u, λ, θ0)g(u, λ) dλ

∫ π

−π
φ j(u, µ, θ0)g(u, µ) dµ

]
du

andΣ2 is q byq matrix whose(i, j) element is

(Σ2)i j =
1
2π

∫ 1

0

[∫ π

−π
φi(u, λ, θ0){φ j(u, λ, θ0) + φ j(u,−λ, θ0)}g(u, λ)2 dλ

+

∫ π

−π
φi(u, λ, θ0)g(u, λ) dλ

∫ π

−π
φ j(u, µ, θ0)g(u, µ) dµ

]
du.

wherec4 is the fourth order cumulant of an innovation process.

Remark 1 If the process is stationary, that is, the time varying spectral density is independent of
time parameteru, we can easily see thatΣ1 = Σ2 and the asymptotic distribution becomes the
chi-square with degree of freedomq.
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