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Suppose the normal linear regression model is used to relate Y to the potential predictors

X1, . . . , Xp,

Y ∼ Nn(α1n + Xβ, σ2I) (1)

where α is an intercept parameter, 1n is a n × 1 vector each component of which is one,

X = (X1, . . . , Xp) is an n × p design matrix, β is a p × 1 vector of unknown regression

coefficients, and σ2 is an unknown positive scalar. The variable selection problem arises when

there is some unknown subset of the predictors with regression coefficients so small or useless

that it would be preferable to ignore them. It would be convenient throughout to index each

of these 2p possible subset choices by the vector γ = (γ1, . . . , γp), where γi = 0 or 1 according

to where βi is small or large, respectively. We use qγ = γ′1p to denote the size of the γth

subset.

The goal is to ignore those Xi for which βi = 0 in (1). In effect, the problem then becomes

that of selecting a submodel of (1) of the form

p(Y |α, βγ , σ2, γ) = Nn(α1n + Xγβγ , σ2I) (2)

where Xγ is the n × qγ matrix whose columns corresponds to the γth subset of X1, . . . , Xp,

βγ is a qγ × 1 vector of unknown regression coefficients. Let denote Mγ the submodel given

by (2).

In the linear model (2), α, βγ and σ2 are unknown parameters. Eventually we will give

prior distributions for all of them, which means full Bayes method. First of all, we provide

prior distributions for α and βγ . The prior measure of α is the Lebesgue measure,

pα(α) = 1 (3)

by convention, which leads that the level of predictive values ŷ is not shrunk averagely.

The most tractable prior distribution of βγ is normal conjugate. In the traditional situation

p < n − 1, which means qγ < n − 1 for any Mγ , so-called Zellner’s g-prior

pβγ (βγ |σ2, g) = Nqγ (0, gσ2(Z ′
γZγ)−1), (4)

where Zγ is a centered matrix of Xγ by subtracting the corresponding mean from each of

them, is often used.

Additionally treating (very) many regressors case p > n− 1 becomes more and more impor-

tant in modern statistics. Since the residual sum of squares is zero in the case Even worse,

where qγ ≥ n − 1, naive AIC and BIC methods do not work. When qγ > n − 1, where the

inverse matrix (Z ′
γZγ)−1 which is covariance matrix in Zellner’s g-prior, does not exist.



In this paper, we consider full Bayes method which is applicable for any case (p ≥ n − 1

and p < n− 1). Needless to say, full marginal density is expressed by multiple integration and

so has been always calculated by numerical method like MCMC. Such numerical full Bayes

methods cannot clearly show us what is happening in terms of data y and Xγ whereas the AIC

and BIC can do that. This is the motivation of this paper and for this purpose we will give a

special variant of Zellner’s g-prior which enables us to not only calculate the marginal density

analytically but also treat many regressors case. In order to give the variant of Zellner’s which

is applicable for any case (qγ > n − 1 and qγ ≤ n − 1), we will make the use of the singular

value decomposition of Zγ ,

Zγ = UγDγW ′
γ =

r∑
i=1

di[γ]ui[γ]w′
i[γ] (5)

where r is assumed to be equal to min(qγ , n − 1). Notice that the n − 1 is from the fact that

Z is the centered matrix. Here Uγ and Wγ are n× r and r× qγ orthogonal matrices, with the

columns of Uγ , (u1[γ], . . . , ur[γ]), spanning the column space of Zγ , and the columns of Wγ ,

(w1[γ], . . . , wr[γ]), spanning the row space. Dγ is an r × r diagonal matrix whose diagonal

components satisfy d1[γ] ≥ · · · ≥ dr[γ] > 0.

Under our special prior using the singular value decomposition, we will propose the default

Bayesian criterion as follows:

BC[Mγ ] =


∏n−1

i=1 νi[γ]−1/2 (GESSγ)−(n−1)/2 if qγ ≥ n − 1∏qγ

i=1 νi[γ]−1/2(RSSγ + GESSγ)−1/4−qγ/2

×(RSSγ)−(n−qγ)/2+3/4 B(qγ/2+1/4,(n−qγ)/2−3/4)
B(1/4,(n−qγ)/2−3/4) if qγ ≤ n − 2.

Here νi[γ] is d2
i [γ]/d2

r[γ] for i = 1, . . . , r, RSSγ is the residual sum of squares under Mγ and

GESSγ is the generalized explained sum of squares

GESSγ =
r∑

i=1

(ui[γ]′y)2

νi[γ]
. (6)

The model, which maximizes BC[Mγ ] among the class of candidates, is chosen. In particular,

when qγ ≥ n − 1, BC[Mγ ] is also expressed as

BC[Mγ ] =

{
n−1∏
i=1

di[γ] ∥β̂LSE [γ]∥n−1

}−1

where | · | denotes the determinant of matrix, β̂LSE [γ] is the least squares estimator

β̂LSE [γ] =
n−1∑
i=1

wi[γ]u′
i[γ]v

di[γ]
= (Z ′

γZγ)−Z ′
γv

and A− denotes the Moore-Pennrose inverse matrix of A. The most advantage of our criterion

BC[Mγ ] is that it is from exact analytical calculation of the marginal density.


