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1. Introduction
Suppose that Y1, Y2, . . . , Yn are independently distributed according to the probability distributions

f1, f2, . . . , fn. The distributions of Y ’s are estimated by various models in statistics, including the re-
gression, the classification and the density estimation. The performance of the statistical model estimation
is determined by the tuning parameters of the estimators and to capture the local property of the data
structure, a fine tuning of the tuning parameters is necessary.

As the measurement of the fitness of the model, the adaptive model selection criterion (AMSC) (Shen
and Ye (2002) and Shen, et al. (2004)) is adopted in this paper. The AMSC was originally introduced as
the model selection criterion for the exponential family, and it will be shown that it is the best estimator of
the Kullback-Leibler (KL) loss for the statistical modelings, which minimizes the L2 distance between the
KL loss for the model and its loss estimator. In this article, the underlying distribution f ’s of the statistical
models are basically supposed to be a member of the exponential family.

The minimization problem of the above model selection criteria with respect to the tuning parameters is
usually highly complex problem. In this article, we utilize the stochastic optimization procedure to minize
the model selectors. This optimization procedure is a version of the Evolutionary Algorithm and its global
convergence property have been proved in Miyata and Shen (2003).

2. Adaptive Model Selection Criterion for the Exponential Family
Suppose that {(Yi,xi)}n

i=1 are sampled, where yi = (yi1, yi2, . . . , yik) is a response and xi is a p-
dimesional vector of covariates, and the components of Y = (Y1,Y2, . . . ,Yn)′ are independently distributed
according to an exponential family:

p(yi|µµµi) = exp{ϕ(µµµi)′yi + α(µµµi) + m(yi)} , µµµi = (µi1, . . . , µik)′, ϕ(µµµi) = (ϕ(µi1), . . . , ϕ(µik))′

with the mean µµµi = E(Yi) and the variance σ2
i (µµµi) = var(Yi). Here, ϕ, α,m may depend on a dispersion

parameter ψ, and suppose ψ may and may not be known. The espected value of Y, µµµ, is estimated by µ̂µµ.
In this section, we introduce the adaptive model selection criterion (AMSC) for the exponential family

according to Shen, et al. (2004). The performance of µ̂µµi is evaluated by the individual Kullback-Leibler loss
of µµµi with respect to µ̂µµi:

∫
p(yi|µµµi) log(p(yi|µµµi)/p(yi|µ̂µµi)) = ((ϕ(µµµi)′µµµi + α(µµµi)) − (ϕ(µ̂µµi)′µµµi + α(µ̂µµi))). Since

the first term of the right side is constant, it will be omitted and the comparative Kullback-Leibler loss of µµµ
with respect to µ̂µµ is defined as follows:

K(µµµ, µ̂µµ) = −n−1
n∑

i=1

(ϕ(µ̂µµi)
′µµµi + α(µ̂µµi) + m(yi)) = n−1

n∑
i=1

(log p(yi|µ̂µµi) + ϕ(µ̂µµi)
′(yi −µµµi))

If µµµ is known, the goodness of fit of various models can be compared by K(·, ·). Since µµµ is unknown, K(·, ·)
must be estimated by the given data. To estimate K(·, ·), we consider a class of loss estimators of the form
−

∑n
i=1 log f(yi|η̂ηηi)+κ, which is characterized by the penalty parameter κ. For the estimation of K(·, ·), the

optimal κ = D(M) is selected so that the L2 distance between K(·, ·) and the model selector is minimized.

D(M) =
n∑

i=1

k∑
j=1

Cov (ϕ(µ̂ij), yij) =
n∑

i=1

k∑
j=1

σ2
ij(µij)

∂

∂µij
E (ϕ(µ̂ij))

The right hand side of (??) is derived based on Shen et al. (2004). Then the optimal estimator of K(·, ·) is
obtained as − log f(Y|η̂ηη)+D(M). The quantity D(M) coincides with the one called the GDF (Generalized
Degree of Freedom) in Shen, et al. (2004). D(M) still contains unknown µµµ and is estimated by D̂(M) and
approximated by Monte Carlo simulation as in Shen, et al. (2004).

The minimization problems in the Algorithm 1 are complex optimization problems. In this article, the
stochastic optimization procedure which is a version of the one used for knot selection of regression spline
in Miyata and Shen (2003, 2005) will be adopted for the optimization.

3. AMSC for Nonparametric Regression



Consider the regression problem Yi = f(xi) + ϵi, ϵi
iid∼ N(0, σ2), i = 1, . . . , n. The unknown regression

function f would be estimated by various nonparametric regression models f̂ , including the regression spline,
the kernel smoothers, and so on. The regression models are controled by its tuning parameters, including
the knot sequence of the regression spline and the bandwidth of the kernel smoothers. For the normal
distribution, the AMSC for the nonparametric regression is obtained as follows:

AMSC = n−1

(
−

n∑
i=1

log p(yi|µ̂i) +
n∑

i=1

∂E(µ̂i)/∂µi

)
.

In this article, we adopt the adaptive free-knot spline to estimate f . The knot sequence of the spline is
optimized so that (??) is minimized.

4. AMSC for Classification
Now we consider the application of the classification problem. Let G ∈ Γ be the label of the class and

suppse that the log odds of the posterior probabilities of the K classes are models by the covariates. K-class
gj , j = 1, . . . ,K are coded via the multinomial random variable Yi = (Yi1, . . . , Yi(K−1)) where

P (G = k|X = x) =
exp{βββ′

kx}
1 + exp{

∑K−1
l=1 βββ′

lx}
, Yi = (Yi1, . . . , Yi(K−1)), Yik =

{
1 : G = k
0 : G ̸= k

Suppose that the conditional expectations E(Yij |x) is related to the predictor x = (x1, . . . , xp) by the
logit link, ηij = log(πij/πi0) =

∑p
r=1 xijrβr, j = 1, . . . , k, πi0 = 1 −

∑k
j=1 πij . Then the GLM with the

multinomial distribution is fit. The AMSC for the logistic linear classification is obtained as follows:

AMSC = n−1

−
n∑

i=1

log p(yi|µ̂µµi) + E
n∑

i=1

k∑
j=1

(
(yij − µij)

p∑
r=1

xijrβr

) = n−1

(
−

n∑
i=1

log p(yi|µ̂µµi) +
p∑

r=1

∂

∂βr
E

(
β̂r

))
.

5. AMSC for Probability Density Estimation
In this section, we apply the AMSC for the density estimation problem. Suppose that Y1, Y2, . . . , Yn

iid∼
f, f : [0, 1] → R+. In this section, the histogram and the logspline estimators are investigated.

Histogram density estimation
Given mesh b = (b0, . . . , bK) for 0 ≤ b0 < · · · < bK+1 ≤ 1 where (K + 1) is the number of the bins and

Bj = [bj , bj+1), j = 0, . . . ,K, and πj =
∫

Bj
f , the histogram and the AMSC for the histogram are defined.

f̂(y,b) =
1
n

K∑
j=0

nj

(bj+1 − bj)
I[bj ,bj+1)(y) =

nj

n(bj+1 − bj)
, y ∈ Bj , j = 0, . . . ,K.

AMSC = n log n −
K∑

j=0

nj log(nj(bj+1 − bj)) +
K∑

j=1

E(η̂j(Yj − µj)).

Logspline density estimation
Let s(x) be a spline function of order m (m ≥ 1) with a knot sequence t = (t1, . . . , tk) for −∞ < t0 <

t1 ≤ · · · ≤ tk < tk+1 < ∞, including kj (kl ≤ m) repeated knots at each location tj . A spline function s(x)
can be represented by the normalized B-spline basis {Bl(x; t), l = 1, · · · ,m + k}, s(x) =

∑k+m
l=1 θlBl(x; t),

where Bl(x; t) = (tl − tl−m)[tl−m, · · · , tl](· − x)m−1
+ and [tl−m, · · · , tl](·) is the m-th order divided difference

of (·). Then the logsplie density estimator and its AMSC are defined as follows:

f(y;θθθ) = exp

 k∑
j=1

θjBj(y) − c(θθθ)

 = exp (s(y) − c(θθθ)) ,= c(θθθ) = log

∫
exp

 k∑
j=1

θjBj(y)

 dy

 , θθθ = (θ1, . . . , θk).

AMSC = −
n∑

i=1

 k∑
j=1

θ̂jBj(yi) − c(θθθ)

 +
k∑

j=1

E(θ̂j(Bj(Y ) − E(Bj(Y )))).

The performance of the proposed models was demonstrated by the simulation study.


