
State Space Models on Special Manifolds

筑瀬靖子 (香川大学名誉教授)

We consider the state space models assuming the matrix Langevin noise processes

on the Stiefel and Grassmann manifolds. The estimation of states via posterior modes

is suggested.

The Stiefel manifold Vk,m is the space a point of which is a set of k orthonormal

vectors in Rm(k ≤ m), so that Vk,m = {X(m × k); X ′X = Ik}, where Ik is the k × k

identity matrix. For m = k, Vk,m is the orthogonal group O(m) of m×m orthonormal

matrices. A random matrix X on Vk,m is said to have the matrix Langevin (or von

Mises-Fisher) distribution, denoted by L(m, k; F ), if its density function is given by

(Downs [2])
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F ′F ), with F an m × k matrix,

where the pFq is a hypergemetric function with matrix argument. Here, assuming

the rank of F being k for the simplicity of argument, we write the singular value

decomposition of F as

F = ΓΛΘ′, with Γ ∈ Vk,m, Θ ∈ O(k), and Λ = diag(λ1, . . . , λk), λ1 ≥ · · · ≥ λk > 0.

which is also expressed as ΓΘ′ · ΘΛΘ′ = M · C, say. The distribution has the unique

modal orientation M = ΓΘ′ ∈ Vk,m and the λi’s control the concentrations about the

mode in the directions determined by the orientations Γ and Θ. These parameters,

mode and concentrations, of the matrix Langevin distribution may be considered as the

counterparts of the parameters, mean and variance-convariances, of the (multivariate)

normal distribution.

The Grassmann manifold Gk,m−k is the space whose points are k-planes ν, that is,

k-dimensional hyperplanes in Rm containing the origin. To each k-plane ν in Gk,m−k,

corresponds a unique m×m orthogonal projection matrix P idempotent of rank k onto

ν. Let Pk,m−k denote the set of all m × m orthogonal projection matrices idempotent

of rank k. We shall conduct our statistical analysis on the manifold Pk,m−k which is

equivalent to the Grassmann manifold Gk,m−k.

For the special case k = 1, the observations from the unit hypersphere V1,m are

directed unit vectors, i.e., directions, and those from the real projective space G1,m−1



are axes or undirected lines through the origin, i.e., one-dimensional subspaces. There

exists a large literature of applications of these directional statistics and its statistical

analysis. The analysis of data on the general Stiefel manifold Vk,m is required in

particular for k ≤ m ≤ 3 in practical applications in the Earth Sciences, Medical

Sciences, Astronomy, Biology, Meteorology, and other fields. See Downs [2], Watson [5],

Fisher, Lewis and Embleton [3], and Mardia and Jupp [4]. One is naturally interested in

k-dimensional subspaces as observations from the general Grassmann manifold Gk,m−k.

The Grassmann manifold is a rather new subject treated as a statistical sample space.

See Chikuse [1] for statistical analyses on the Stiefel and Grassmann manifolds.

We develop a state space model relating the time series observations {Y1, Y2, . . . , Yt}
on the Stiefel manifold Vk,m to a sequence of unobserved state modal orientation ma-

trices {X0, X1, . . . , Xt} on Vk,m of noise processes distributed as matrix Langevin. We

show a Bayes method for estimating the states {X1, X2, . . . , Xt} by the posterior modes

assuming X0 given. An iterative procedure for the estimation is suggested. Further, we

consider an extended state space model on Stiefel manifolds, where two sequences of

unobserved state modal orientation matrices {X0, X1, . . . , Xt} on Vk,m and unobserved

state regression matrices {Y0, Y1, . . . , Yt} on O(m), in consideration of orientational

regressions, are involved.

A simple state space model on the manifold Pk,m−k, where the time series observa-

tions {Q1, Q2, . . . , Qt} on Pk,m−k are related to a sequence of unobserved state matrices

{P0, P1, . . . , Pt} on Pk,m−k of noise processes distributed as matrix Langevin.

A more detailed discussion is given in [Y. Chikuse, State Space Models on Special

Manifolds, J. Multivariate Anal. 97 (2006) 1284−1294].
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