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Let X = (X1, . . . , Xk+1) be a random vector in Rk+1 with multinomial
distribution with parameters n, π1, π2, . . . , πk+1, where π1 + . . . + πk+1 = 1, i.e.
for the integers nj : 0 ≤ nj ≤ n for j = 1, 2, . . . , k + 1, and n1 + . . . + nk+1 = n,
we have

P(X1 = n1, . . . , Xk+1 = nk+1) = n!
k+1∏
j=1

π
nj

j /nj !.

For testing the simple hypothesis H0 : π = p (p is a fixed vector) against
H1 : π ̸= p three statistics are often used:
Karl Pearson’s chi-square test: T1 =

∑k+1
j=1 (Xj − npj)2/(npj),

Log-likelihood ratio statistic: T2 = 2
∑k+1

j=1 Xj log{Xj/(npj)},
Freeman-Tukey statistic: T3 = 4

∑k+1
j=1 (

√
Xj −

√
npj)2.

By multivariate CLT one can show

P(Ti < c) = Gk(c) + R with R = O(n−1/2),

where Gk(x) is the distribution function of a chi-square random variable with k
degrees of freedom. We would like to consider problem: can we get more precise
result for order of R ?

Let Y 1, Y 2, . . . , Y n be i.i.d. random vectors in Rk+1 with multinomial
distribution with parameters 1, p1, p2, . . . , pk+1. Using Y 1 = (Y11, . . . , Y1,k+1)T

we define a random vector Z1 = (Z11, . . . , Z1k)T by the formula Z1i = Y1i − pi

for i = 1, 2, . . . , k. Then Z1 lies with probability 1 on the lattice

U =
{

m − p : m is an integer vector in Rk
}

,

Z1 has mean zero and its covariance matrix V is known.
Put Sn = n−1/2(Z1 + . . . + Zn). Then

P(T1 < c) = P(ST
n V −1Sn < c) = P(Sn ∈ A),

where A =
{
x = (x1, . . . , xk)T : xT V −1x < c

}
is an ellipsoid.

Additional notation: N(nc) – number of integer vectors m in the ellipsoid
(m − np)T V −1(m − np) < nc; V (nc) – the volume of this ellipsoid; V (nc) =
(πnc)k/2|V |1/2/Γ(k/2 + 1).

Theorem 1. Yarnold (1972) If E|Z1|4 < ∞ then P(ST
n V −1Sn < c) −

Gk(c) = J1 + O
(
n−1

)
uniformly in c, and

J1 = (N(nc) − V (nc))
exp(−c/2)

(2πn)k/2|V |1/2
= O(n−k/(k+1)).

Theorem 2. Götze and Ulyanov (2003) If k : k ≥ 5 then there exists a
positive constant c1(k) depending on k only such that

|J1| ≤
c1(k)

n

(
σ1

σk

)k+1 (
1 + log

σ1

σk

)
,
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where σ1 ≥ σ2 ≥ . . . ≥ σk denote the eigenvalues of V −1.
Siotani and Fujikoshi (1984) applied the local asymptotic expansions to con-

struct asymptotic expansions for the distribution functions of the log-likelihood
ratio statistic and the Freeman-Tukey statistic. Later the results by Siotani and
Fujikoshi were extended to the so-called power divergence family of statistics
introduced in Cressie and Read (1984):

Tλ = 2(λ(λ + 1))−1
k+1∑
j=1

Xj

[
(Xj/(npj))λ − 1

]
,

where λ is a real number. However a new problem arises here.
It is connected with the fact that here the set A is defined as

A =
{
x = (x1, . . . , xk)T : T2(x) < c

}
or as A = {x : T3(x) < c}, where e.g. for

log-likelihood statistic

T2(x) = 2
k+1∑
j=1

(npj +
√

nxj) log{1 + xj/(
√

npj)}.

This means that comparing with situation for Pearson’s test the set A is not
exactly an ellipsoid but only “approximated” by ellipsoid. Therefore, one needs
limit theorems for ”almost” ellipsoids and results for lattice point problems in
these cases.

Theorem (Huxley (1993)). Let Ω be a convex Euclidean plane domain of
area V , bounded by a simple closed curve C, composed of finitely many pieces Ci,
which are three times continuously differentiable in the following sense: on each
piece Ci the radius of curvature ρ is non-zero and continuously differentiable with
respect to the tangent angle ψ. Let M be sufficiently large and let MΩ denote
the set formed by expanding Ω linearly by a factor M . Then for any isometric
embedding of MΩ in the Euclidean plane, the number of integer points (m, n)
in MΩ is

V M2 + O
(
IM131/208(log M)18627/8320

)
.

Theorem. Assylbekov, Zubov and Ulyanov (2007).
For k = 2 and any λ we have

P(Tλ < c) = G2(c) + J1(Aλ) + O(n−1)

with
J1(Aλ) =

(
n−3/4+7/104(log n)18627/8320

)
.

Similar problems arise for approximations for the distributions of multino-
mial goodness-of-fit statistics under local alternatives (see Taneichi, Sekiya and
Suzukawa (2002)).

In the above arguments we constructed asymptotic expansions for the distri-
bution functions of the statistics applying local expansions. One of the problems
in using local Edgeworth expansions lies in locating the lattice points near the
boundary. However, with the availability of sufficient computing power this
problem of tracking lattice points near the boundary can be tackled effectively
especially for small and moderate sample sizes (see Bhattacharya and Chan
(1996)).
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