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In this paper, we concern developing new orientational distributions on the Stiefel

manifold. The Stiefel manifold Vk,m is the space a point of which is a set of k or-

thonormal vectors in Rm(k ≤ m), so that Vk,m = {X(m × k); X ′X = Ik}, where Ik

is the k × k identity matrix. The manifold Vk,m is an analytic manifold of dimension
1
2
k(2m− k− 1)[= km− 1

2
k(k + 1)]. It is also a subset of the hypersphere of radius k1/2

in Rkm, since trX ′X = k. For m = k, Vm,m is the orthogonal group O(m) of m × m

orthonormal matrices. A point of Vk,m may also be called an orientation extending the

notion of a direction for k = 1. The analysis of data on Vk,m(k ≥ 1) played important

roles in the Earth Sciences, Medical Sciences, Astronomy, Biology and many other

fields. For discussions of statistical analysis on Vk,m, see e.g., Watson [4], Fisher, Lewis

and Embleton [2], Mardia and Jupp [3], and also Chikuse [1].

We develop orientational distrbutions on the general Vk,m employing some methods,

based on the matrix-variate t distributions. First, we investigate the method via im-

posing the condition Z ′Z = Ik for an m× k random matrix Z. Imposing the condition

Z ′Z = Ik on the matrix-variate t distribution Tm,k(n,M ; Im, Σ) leads to defining the

orientational distribution whose probability density function (p.d.f.) is proportional to

|Ik −F ′X|−b. When Z is distributed as matrix-variate Tm,k(n, 0; Σ1, Σ2), we obtain the

orientational distribution with p.d.f. proportional to |Ik−X ′BXA|−b. The normalizing

constants of the p.d.f.’s and some properties of these two distributions are obtained.

The next method uses the polar decomposition and its related decomposition of

a random matrix. We investgate special cases where the p.d.f.’s thus derived are

given by closed mathematical forms. We derive the distribution of the orientation

HZ = Z(Z ′Z)−1/2(∈ Vk,m) of an m × k random matrix Z by integrating the p.d.f.

of Z = HZT
1/2
Z over TZ = Z ′Z > 0. We discuss on the distribution of HZ when Z

is distributed as Tm,k(n, 0; Σ, Ik), which may be called the matrix angular central t

(MACT) distribution. Next, we derive the distribution of the reference matrix YZ or

PZ = YZY ′
Z = HZH ′

Z , the orthogonal projection matrix of Z, by integrating further-

more the p.d.f. of HZ = YZQZ over QZ ∈ O(k). The distribution derived in this way

gives a distribution which is invariant under right-orthogonal transformations on Vk,m.
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When Z is distributed as Tm,k(n,M ; Im, Σ), we derive the p.d.f. of the distribution of

YZ or PZ , which may be called the orthogonal projective t (OPT) distribution.

We consider some inferential problems, e.g., estimation and testing for the param-

eters, for these distributions developed in this paper. Approximations of the distribu-

tions and approximate statistical analyses are concerned.

There are some orientational distributions which have been already defined and dis-

cussed for statistical analysis on Vk,m in the literature. The distributions which have

been most frequently used are the matrix Langevin and the matrix Bingham distribu-

tions. The matrix angular central Gaussian and the orthogonal projective Gaussian

distributions were also developed as right-orthogonally invariant distributions on Vk,m.

They are known to have been derived based on the matrix-variate normal distribu-

tions. It is shown that these distributions are obtainable as limiting distributions of

the corresponding distributions developed in this paper.

We suggest a larger family of more generalized distributions whose p.d.f.’s are ex-

pressed in terms of hypergeometric functions with matrix argument, and furthermore

which have the rotational symmetry around a given subspace. It is seen that most of

the distributions discussed in this paper and in the existing literature belong to this

larger family.
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