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1 Introduction

The aim of this paper is to clarify the ordering structure of EDMs (Euclidean dis-
tance matrices) and spherical EDMs. In Section 2, we introduce a group majoriza-
tion ordering for EDMs, and then establish two inequalities. The first inequality
deals with the radius of a spherical EDM: It states that the radius of a spherical
EDM is increasing with respect to the group majorization ordering; The second
inequality concerns the spreadth of the eigenvalues of an EDM: It shows that the
larger an EDM is in terms of the group majorization ordering, the more spread out
its eigenvalues are. Section 3 is devoted to describing minimal elements with respect
to this ordering.

2 Ordering for EDMs

Let G be a compact subgroup of On, where On denotes the group of n×n orthogonal
matrices, and let Sn be the set of n× n symmetric matrices. The group G acts on
Sn via the group action

Σ → ΓΣΓT with Γ ∈ G and Σ ∈ Sn. (2.1)

Hence for each Σ ∈ Sn, the G-orbit of Σ is given by {ΓΣΓT | Γ ∈ G}. For Ψ, Σ ∈ Sn,
we write Ψ ≤GΣ if Ψ is in the convex hull of the G-orbit of Σ. Namely,

Ψ ≤GΣ iff Ψ ∈ co{ΓΣΓT | Γ ∈ G}, (2.2)

where, for a set A, the notation coA means the convex hull of A. The ordering ≤G
thus defined is called the group majorization ordering induced by G.

To introduce a group majorization ordering for EDMs, let G = Pn, where Pn is
the group of n× n permutation matrices. The group Pn acts on the set Λn via the
same action as in (2.1):

D → ΠDΠT with Π ∈ Pn and D ∈ Λn. (2.3)

Let Λ̃n be the set of all spherical EDMs. Below we often limit our consideration
to Λ̃n, and hence the following lemma is helpful, which shows that Pn acts on the
set Λ̃n via the same action as in (2.3).

Lemma 1. (Kurata and Sakuma (2007)) For each D ∈ Λ̃n and Π ∈ Pn, it holds
that ΠDΠT ∈ Λ̃n.

Theorem 1. (Kurata and Sakuma (2007)) If D1, D2 ∈ Λ̃n satisfy

D1 ≤Pn D2, (2.4)



then the following two inequalities hold:

radius(D1) ≤ radius(D2) and center(D1) ≤ center(D2). (2.5)

holds, where radius(D) denote the radius of the sphere of a spherical EDM D, and
center(D) the length of the center of the sphere.

Next we state an inequality on the spreadth of the eigenvalues of an EDM D ∈
Λn. We write y º x if y majorizes x. For D ∈ Λn, let λ1(D) ≥ · · · ≥ λn(D) be the
ordered eigenvalues of D, and let

λ(D) = (λ1(D), · · · , λn(D))T : n× 1.

Theorem 2. (Kurata and Sakuma (2007), Kurata (2007)) If D1, D2 ∈ Λn satisfy
D1 ≤Pn D2, then λ(D2) majorizes λ(D1):

λ(D2) º λ(D1) and λ(B2) º λ(B1). (2.6)

3 Minimal Elements With Respect To ≤Pn

We call an EDM D ∈ Λn minimal with respect to the ordering ≤Pn , if there is no
EDM D ∈ Λn such that D 6= D and D ≤Pn D.

Theorem 3. (Kurata and Sakuma (2007)) An EDM D ∈ Λn is minimal with re-
spect to the ordering ≤Pn if and only if it is of the form

D = β(eeT − In) for some β ≥ 0. (3.1)

Finally we consider the problem of describing the smallest element of the convex
hull of the orbit of a given D ∈ Λn.

Theorem 4. (Kurata and Sakuma (2007)) For each D ∈ Λn the matrix

m ≡ m(D) =
eTDe

n(n− 1)
(eeT − In) (3.2)

satisfies
m(D) ≤Pn F for any F ∈ co{ΠDΠT | Π ∈ Pn}.

That is, m(D) is the smallest element of co{ΠDΠT | Π ∈ Pn}.

4 Spreadth of Configuration

Fix a spherical EDM D ∈ Λ̃n with configuration {p1, · · · ,pn} ⊂ Rr, and let −q be
the center of {p1, · · · ,pn}. Then the vectors

p̂i = (pi + q) /‖q‖ (i = 1, · · · , n) (4.3)

thus defined are on the unit sphere in Rr. Let SV(D) be the spherical variance of
{p̂1, · · · , p̂n}. Then the following monotonicity result holds.

Theorem 5. (Kurata (2007)) If D1, D2 ∈ Λ̃n satisfy D2 ≤Pn D1, then the inequality

SV(D2) ≤ SV(D1) (4.4)

holds.


