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Statistical inference for quantiles in
frequency domain

Yan Liu

Waseda University
Department of Applied Mathematics

Abstract

We consider the estimation and testing problems of quantiles in frequency domain. For second order
stationary process, the spectral distribution function is uniquely determined by the autocovariance
function of the process. We first define the quantiles of the spectral distribution function. The
asymptotic distribution of the naive quantile estimator is shown to be non-Gaussian. This result
is different from that considered in time domain. We recover the asymptotic normality of quantile
estimation by smoothing the periodogram. Besides, we consider the quantile tests in frequency
domain from our estimation procedure. Strong statistical power is shown in our numerical studies.
The power of our proposed statistic under local alternatives is also discussed.

keywords: quantile estimator, frequency domain, asymptotic properties of estimators

1. Quantiles in frequency domain

Suppose {X;; t € Z} is a second order stationary process. From Herglotz’s theorem, there uniquely
exists a right continuous, nondecreasing and bounded function F(A) on A = [—m, 7] with F(—7) =0
such that .
R(h) = / eMdE(N), (heZ).

The function F'(A) is called as the spectral distribution. If F'(\) is absolutely continuous with respect
to the Lebesgue measure, the spectral density function f()\) is uniquely defined almost everywhere.
In the following, we define the quantile of the spectral distribution function F(\) through an
objective function S(0), i.e.,

sO = [ p-0)F(@Y), (1)

where p,(x) = (7 — 1(z < 0)). Under this formulation, we obtain the following theorem.

Theorem 1.1. Suppose {Xy; t € Z} is a zero mean second order stationary process with spectral
distribution function F'(X). Define S(8) by (1.1). Then the pth quantile A, of the spectral distribution
function F(X) is uniquely defined by the minimizer of S(0), i.e.,
= mi . 1.2
Ap = min 5(6) (1.2)
1
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2. Estimation for the quantiles in the frequency domain

Suppose {X;; 1 < ¢ < n} is the observation stretch of the process. Let us define the periodogram
T2
I, x (w) based on the observations by I,, x(w) = ‘Z?zl X;e™| /(27n). Then, the estimator for the

quantiles in the frequency domain is defined by

Ay = arggnei/r\l/ pp(w — )1, x (w)dw. (2.1)

Under regularity conditions, the consistency of estimator (2.1) is shown.
Theorem 2.1. Suppose {X;; t € Z} satisfies regularity conditions. Then we have 5\p 7, Ap.
However, the estimator (2.1) is shown to be asymptotically mixed normal.
Theorem 2.2. Suppose {Xy; t € Z} satisfies regularity conditions. For —m < A\, <0,
Vi, = ) =4 MN(0,6202),
where & is an exponential distributed random variable with mean f(X) and

0% = mp? f(w)?dw + 27 (1 — 4p) f( )2 dw + 271' / Q w1, Wa, —wa )dwy dws

—T —T —T

/ / P*Q (w1, wo, —wo)dwydws — 2;0/ Q(W1,W27—w2)dw1dw2},

where Q(w1,wa,ws) is the fourth order spectral density.

To overcome this difficulty, we consider the following modified estimator 5\;, ie.,

5\1, = arg min /" pp(w — 0) f(w)dw, (2.2)

oc[—m,m)
where f(w) is a quantity that the periodogram I, x(A) smoothed by ¢(w).

Theorem 2.3. Suppose {Yi; t € Z} follows a sinusoidal models with a second order stationary
process { X}, whose spectral density is defined by fx(w). Then for continuity point A, (—7 < Xy <

0)7
V(XS = Ap) —a N(0,07), (2.3)
where

T

)‘P
7 = xO) 2 [ [0 ) () +2m(1 =) [0y @) (@)

—T

Ap Ap
+ 271'{/ / ¢(W)QQX (w1, w2, —wa)dwdws + / / QX (w1, wa, —ws)dwy duw,

—219/_7r » ¢(W)2QX(W17W2>_W2)dwldw2}];

where fy(w) is a formal spectral of {Y;} and Qx(w1,ws,ws) is the fourth order spectral of {X:}.

We applied this result to quantile test for goodness of fit. Strong statistical power is shown in our
numerical studies. The power of our proposed statistic under local alternatives is also discussed.



A 2 Quantile Hodrick—Prescott Filtering

Hiroshi Yamada

Department of Economics, Hiroshima University, Japan

1 Introduction

Quantile regression was introduced in the seminal work by Koenker and Bassett (1978) and widely
applied in econometrics. Hodrick—Prescott (HP) (1997) filtering is used frequently to estimate trend
components of macroeconomic time series. In this paper, we consider a filtering method that combines
these two statistical tools. We refer to it as quantile HP (qHP) filtering. qHP filtering enables us to
obtain not only the median trend, which is more robust to outliers than HP filtering, but also other
quantile trends, which may provide a deeper understanding of time series properties. As in the case
of HP filtering, it requires selection of tuning parameter. We propose a method for selecting it, which
enables us to compare trends from (q)HP filtering. As an empirical example, we present estimated

quantile trends of Japan’s industrial index of production (IIP).

2 Quantile HP filtering

HP filtering is defined as follows:

T T
F= argmin 3 (g —x)? + A (A%)? = argmin |y — @]} + | Dall} = (Ir + AD'D) "y, (1)
xre

z1,....27€R {5 P
where A € R+ is a tuning parameter, A?z; = Axy — Axy 1 =2y — 22 1 +T¢—2, Y = [y1,..., 97|, T =
[z1,...,z7]), I is an identity matrix of size T, and D € R(T=2)*T ig a second-order difference matrix
such that Dx = [A%z3, ..., A%zp]. Here, for a vector a = [ay, . ..,an)], [|all, = (la1|P 4 - - - + |an|P)/P.
Letting p.(-) be the tilted absolute value function such that:

() T|ul, ifu>0,
\u) =
P (1 —=7)|u|, otherwise,

where 7 € (0,1), qHP filtering is defined by replacing Zle(yt —x4)% in (1) with Z;T:l pr(ys — ¢):

T T
minimize Z pr(ye — ) + Z(A2$t)2, (2)
—1

T1,...,o7 ER s

where ¢ € Ry is a tuning parameter. (2) is a kind of squared ¢s-norm penalized quantile regression.
Since pr(ys — z¢) = 0.5|ys — z¢| + (7 — 0.5)(y: — z¢), (2) can be represented as
T T
(

minimize 0.5 Z lyy — x| + (7 — 0.5) Z

T
_ 2.2
Z1,...,27 ER be xt) + ’(/JZ(A xt) ’
t=1 t=1 t=3
or in matrix notation,
miniRI?Tize 0.5y — |1 + (7 — 0.5)¢/ (y — ) + || Dx||3, (3)
xE
where ¢ € R is a vector of ones. We denote the solution of (3) by Z and refer to it as qHP trend.

Letting @ € R” be such that z = A, where

1 0 0 - 0 0
11 0

a- |t 2 Lo g,
1 3 2 L0
: : : 1 0
1 T—-1 T-2 2 1]
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Figure 1: Japan’s IIP and its qHP trends (A = 133107.94).

qHP filtering, (3), can be represented as
minimize 0.5y — A8y + (7 — 0.5) (y — AB) + || J8)|3, (4)
€

where J = [0, Ir_p] € RT=2*T Tt is notable that the first column of A is ¢ and the first entry of 6 is
not penalized, which indicates that 7-quantile of qHP residuals, y — Z, approximately equals zero.

(3) is also represented as the following constrained minimization problem:
mini%ize 0.5y — ||1 + (1 — 0.5)/(y — x), subjectto || Dx|3 < c, (5)
EAS

where ¢ € Ry is a tuning parameter that corresponds to ¢ in (3). Then, instead of selecting the value
of 1, we select the value of ¢ as ¢ = || DZ||3 so that we obtain Z such that | DZ||3 = |Dz|3. The

corresponding value of 1 to ¢ = ||[DZ||3 can be expressed as
¢ =A{0.5]ly — [l + ( = 0.5)'(y — )} / {2(y — )’ D' Dz}, (6)

which becomes ¢ = ||y — Z||1/ {4(y — Z)' D' DZ} when 7 = 0.5.

References

1. Hodrick, R. J. and E. C. Prescott, 1997, Postwar U.S. business cycles: An empirical investigation,
Journal of Money, Credit and Banking, 29, 1, 1-16.
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Modifying Gamma Kernel Density Estimator by
Reducing Variance

Rizky Reza Fauzi, Graduate School of Mathematics Kyushu University
Yoshihiko, Maesono, Faculty of Mathematics Kyushu University

We discuss a new kernel type estimator for nonnegatively supported density function
fx(z), using pdf of gamma distribution. Chen(2000, Ann.Inst.Stat.Math.) introduced
two gamma kernels which are Gamma (% +1, h) and Gamma(py(z), h) densities. The
order of convergence of variances are O (%\/ﬁ) in the interior and O(-;) near boundary.

Under some conditions for  and h, Chen showed his estimators having O(n~3) for the
optimal mean squared error.

Rosenblatt (1956, A.M.S.) and Parzen (1962, A.M.S.) introduced kernel density esti-

mator as | X,
DK ().

where K (u) is a kernel function which satlsﬁes J K(u)du = 1; and h is called as bandwidth
satisfying h — 0 and nh — oo when n — oco. Under some regularity conditions for fy(x),
K (u) and h, we have

bias[fx(z)] = };2 }'((x)/uQK(u)du—i-o(hQ),
varlfx ()] = o).
MSE[fx(z)] = O(n 5), when h is optimum.

However, if we deal with nonnegative support distribution, the standard KDE will suffer
the boundary bias problem. The interval [0, &] is called as boundary region, and the point
greater than h is called as interior point. In the boundary region, the standard KDE
fx(x) usually underestimates fx(z), because standard KDE puts some weights on the
negative axis as well. Or, mathematically, if we use a symmetric kernel supported on
[—1,1], we have

bias[fx ()] = UTKmmu—Qfﬂ@—hﬂ@qqu@mu

—1h2 ) -1
+§j%@/¥ﬁKWMu+dN)

when z = ¢h, 0 < ¢ < 1. Which means lim,_,« bias|fx (z)] = {ffl K(u)du — 1} fx(z)
(not consistent).

To overcome this problem, Chen (2000) introduced gamma kernel for the first time by
using the pdf of Gamma (% +1, h), that is




and for some k > 0, we have

~

bias[fi(z)] = |fx(z)+ I‘f ()| h+o(h),
var[fl(x)] = T T f:afnz/_7 %—)oo

e+ Dfx(e) o

25T (5 + Lnh’ h

Chen’s gamma KDEs obviously solved the boundary bias problem. However, Chen’s
gamma KDEs also got some problems. We need a condition ¥ — x as we can see at the
variance formulas, the variance also depends on a factor ﬁ in the interior point, which
means the variance becomes much larger when x is small even though still not in the
boundary. Zhang (2010, Stat.Prob.Let.) showed the MSE is O(n~3) when z is close to
the boundary (worse than the standard KDE).

Here, we tried to define another gamma KDE, as the density of Gamma (ﬁ, zvVh + h),
that is

N 12 \}_167%
le) = nzzlr( Y (b= )
bias(fu(z)] = { ;g(a:)]\/mo(\/ﬁ),

~ R2 L—1 x (T
var[fn(x)] = (\/E )f (@) —, «>h
2(x + Vh)\/r(1 = VR)R (% —2) nVh

R (75 — 1) fx(@)
2(cvh+ 1)y/m(1 = VAR (Z — 2) nhi

ol

where ¢ = ¥ and R(z) = efrfré:f;, z>0.
By modifying it with similar technique as geometric extrapolation, we define the mod-
ified gamma kernel density estimator as fx(z) = [fu(2)]?[fin(2)]"". And we can get the

bias and the variance are

bias[fx(x)] = 2 [b(m) 2;)(?())

var[fx(z)] = var[2fy(z) — fu(2)],

]hm(h)

where
ale) = Jile)+ e i)
x

o) = (o+5) Frw)+a* (5 +3) 4@
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Improvement of kernel estimators using boudary bias
reduction methods

Taku MORIYAMA (Graduate School of Mathematics, Kyushu University)*

1. Introduction

In this talk, I discuss improvement of kernel estimators using boundary bias reduction
methods. As we know, kernel estimators are biased (as we call boundary bias) if the true
density has finite or semi-finite support. When the support is known, we have various
methods to improve the estimators. On the other hand, there are few ways to adjust
them to the unknown support. Hall and Park (2002) introduced a way to estimate the
density whose support is estimated by order statistics. [ propose a new way to estimate
the unknown support using a boundary bias reduction method which is used to correct
the distribution estimator. The asymptotic properties and some simulation results of
kernel estimators using the proposed boundary estimator are shown. Furthermore, I
discuss the necessity of giving appropriate (bounded) support of the estimated density
even if the information is not available.

Let X1, , X, beii.d. from F and the density be f. The kernel density estimator
(K.E.) and cumulative estimator are

o) = %/K (”3 . y) dF,(y), and F(z) = /W (‘U - y) dF.(y)

where F,(y) = n'> " I(X; < y) and W is a integral of kernel function K :
Wi(z) = f_zoo K(u)du. K is usually assumed its nonnegativity and symmetricity. h
is a bandwidth which satisfies h — 0 and nh — oo. They have consistency when
supp(f) = (—o0,00) holds. Otherwise (e.g. supp(f) = (—oo,U]), the density estima-

~

tor f(z) loses it because of the following boundary bias near the boundary

piosifw) = [~ K (%) F(w)dy — F(U)

- 1)

-+ 0(h) = 0(1)

— [ K@ - ki - f0) = -
0
The bias of F(U) is of order O(h) which is also lower order.

In case the boundary is known, various ways to improve it has been discussed well.
However, there are few ways to adjust them to the unknown support. I think even
in case we have no information in advance, we should estimate the (compact) support
of f appropriately and use the kernel type estimator reducing the boundary bias. A
reasonable approach is to use an estimator reducing the boundary bias derived from
the estimated support. Hall & Park(2002) discusses boundary estimator based on
sample maximum X, (minimum X). I propose a new boundary estimator fitting
the boundary bias reduction method which is what we want to use.

2. Proposed method
We assume that supp(f) = [L,U], L is known, U is unknown and f(U) > 0. The
boundary estimator v = @ using the estimator F, ﬁ reducing boundary bias derived

Keywords: boundary bias, kernel density estimator, kernel cumulative estimator.
*e-mail: moritaku35421680gmail . com



from the support [L, u] is defined as follows.

n
n+1

AXw == A= fed

Define the estimator of U as the solution v = u, the distribution estimator as ﬁg and the
density estimator as ]";i The equation F}(X(,)) = n/(n+ 1) derives from the property
of maximum estimation in U(0, 1) because F'(X) < U(0,1) and F(Xq) ~n/(n+1)
holds. The general solution u = @ of (1) is not given as an explicit formula, but in many
cases U can be seen as a M estimator. Using boundary kernel method (represented by

ﬁ[LBK]) (Tenreiro(2013)) and reflection method (ﬂm) (Silverman(1986)), asymptotic
properties and simulation results are shown.

3. Asymptotic properties

We can prove the following asymptotic properties of them using the properties of M
estimator.

a LU, EPNC) = Fy() + Op(h? +n ')

We can find that the bias term becomes higher order and %BK}(-) recovers its consis-
tency.

@B U, FNC) = Fu() + Op(h? +n V%)

J%R](-) also recovers the goodness of kernel density estimator. Their proofs are omitted
here.

I claim that the proposed method is superior in sense of precise estimation of tail
behavior at least in case the support seems compact. Some numerical experiments are
given in the day.

References
[1] Hall, P., & Park, B. U. (2002). New methods for bias correction at endpoints and bound-
aries. Annals of Statistics, 1460-1479.

[2] Tenreiro, C. (2013). Boundary kernels for distribution function estimation. REVSTAT
Statistical Journal, 11(2), 169-190.

3] Cwik, J., & Mielniczuk, J. (1993). Data-dependent bandwidth choice for a grade density
kernel estimate. Statistics € Probability Letters, 16(5), 397-405.
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On the extension of Lo’s modified R/S statistic against to locally stationary
short-range dependence
Junichi Hirukawa, Minehiro Takahashi, Ryota Tanaka (Niigata University)

1. INTRODUCTION

To detect long-range or* strong” dependence, Mandelbrot has suggested using
the range over standard deviation or R/S statistic, also called the' rescaled range,”
which was developed by Hurst in his studies of river discharges. The R/S statistic
is the range of partial sums of deviations of a time series from its mean, rescaled by
its standard deviation. Lo’s modified R/S statistics can distinguish between long-
range dependence and short-range dependence. Although Lo’s method of test has
been used various fields of the studies, the time series is assumed to be stationary
processes. The stationary process has been widely used for many statistical model
in time series analysis. Although these models have an important role, stationarity
is not sufficient to describe the real world. In order to develop the asymptotic
theory for non-stationary models, the important model of a non-stationary process
is proposed in Dahlhaus, called locally stationary processes. In this paper, we apply
Lo’s modified R/S statistics to locally stationary processes.

2. LO’S MODIFIED R/S STATISTIC FOR LOCALLY STATIONARY PROCESSES.

2.1. Under null hypothesis. Define locally stationary general linear processes
{ujr} as
= J J
wir =30 () e (7o)

. [ee] .
) =n (L) o
b <T’L> = 2 by <T> L, L is the lag operator,

e VR (0,1) and b;(u) is twice continuously differentiable with

where

o0
sup || ‘bl(z)(u)‘ <oo, 1=0,1,2.
w€[0,1] =0
Let
k k
loc .__ . o _ : . 7
Qr:= max » (yir—9r)— min > (yir—7r)
J=1 J=1
where

L ’U,j7T _ 1 )
= L —— T
Y, b(%,l) Yr sz:;yj

Then we have
T e Loy,
where V' is the range of a Brownian bridge on the unit interval.

We assume the terminal values {usr | T +1 < s <T+n — 1} can be available
as Us,7 = O peg bk (1) £5—k. Define

1 q min{n—1,n—1+1}

2 —_ —_
ojrn (9)” = n Z wi (q) Z (jtir — Ui 1m) (Wji-t, T — UjTn)

l=—q i=max{0,l}
1



where

n—1 [e’e)
l 1 s
w(q) =1- 7 |+| T UjTn = - E Ujtq, Ty Us,T = E br, (;) Es—k
i=0 k=0

and ¢ << n <<T. Let

T
~ Uy T ~ 1 ~
Y57 '==——"~, Yr =5 E Y5, T
035, T,n (Q) T j=1
k k
loc ~ ~ —
= max — min i — .
n,T 15k ST £ (y], ~7r) 1<k £ (y], Ur)
Jj= j=

Then, we can see that

aj1n (q) b (%, 1) .
Theorem 2.1 (Locally stationary modified R/S statistic).

1 Aloc _d
— =V
vT "
2.2. Under alternative hypothesis. Let ¢; satisfy the following equation
(1 - L)dEt = MNt, ne ~ zzd(O, 1),

where L is the lag operator and

> s
Us, T = Zbl (-) Es—1-
= T

Now, we consider weak convergency of partial sum process to fractional Brownian
bridge. Let
1 [tT]
d _
Xi(t) =~ 3 ir —Tr)
Jj=1

Then, using continuous mapping theorem, we can obtain
d d
X (t) % Byyy () = tBay 3 (1) == By, 1 (1),

where By, 1 () = Wg(7) is fractional Brownian motion and Bj , (t) = Wg(7) is
2

so-called fractional Brownian bridge with H = d + %

k
1 . — o
Theorem 2.2. (a) 1<k<TWZ:1(yj,T*yT)é Juax, BdJr t) = Md+
‘7:
1k
(b) 1£r]1§1£TTd+% z;(yj,T—yT)éorglngd+2() M1y
j=
1 oc o o
(0) g Qi = M,y —mi .
b(i,l) p Joo for d>0,
Q) Gor= 222
(@ 51 =5 @ 0 for d<0,

(e) T

Qloc oo for d >0,
0 for d<O.
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Self-normalized and random weighting approach to
likelihood ratio test for the model diagnostics of stable
processes

Fumiya Akashi (Waseda University)
Jianqing Fan (Princeton University)

1. Fundamental Settings

Let {X; : t € Z} be a symmetric a-stable (sas) linear process generated as

X,= > wZ (teD), (1)

J=0

where {Z, : t € Z} is a sequence of independent and identically distributed sas-random vari-
ables, whose characteristic function is given as E[exp(iuZ;)] = exp(—clu|®). Here o € (0, 00)
and a € (0,2] are, respectively, called the scale and the tail-index of the sas distribution.
Especially, the tail-index a controls the behavior of the tail probability of X;, and the model
does not have finite variance when « < 2. To deal with such infinite variance model, let us
consider the frequency-domain representation of (1), which is the power transfer function

2

flw) =

D viexp(-ijew)
j=0

This talk focuses on the estimation problem of the pivotal quantity of the model (1) defined
as

21

Oy := arg min f AC) dw, 2)
60 Jo  g(w;0)

where g : [-7, 1] X R? — R! is a user-specified score function and does not necessarily coin-

cide with the true power transfer function f(w). By choosing g appropriately, our framework

can grasp various important problems such as variable selection or test for independence of

the model. To make inference for the pivotal quantity (2), we consider two typical statistics

1< L@y . .
D) = ~ ; qg ¢ Tu®:=minD.p-D,6) (& =2njn),

where I,(w) := | > X, exp(—itw)*/ Y, X? is a self-normalized periodogram (c.f. [3]).
Under some regularity conditions, it is show that

Xn.a D (60) £y and xiaT,,(GO) Syviwly (Xno = (n/logn)'/?),

where v is a sum of sas-random variables, V is a sum of sas-random vectors and W is a
constant matrix. Since the rate of convergence x,, involves the unknown tail-index a, we
consider the self-normalized statistics as

Dy(0) := D,(0)/d,”> and  T,(6) := T,(6)/dh,
This work was supported by Grant-in-Aid for Young Scientists (B) (16K16022, Fumiya Akashi).




where

: 2 14,
dy=n"' Y K,y (j/wK,,| and K, = - > L(do.
k=1

J=1

As a remarkable feature, the rate of convergence of the self-normalized factor d, is x2 ;

n,a®
) . . L
that is, there exists some non-degenerate random variable d such that x; ,d, — d. There-
fore, D,(6) and T,(6,) also have the non-degenerate limit distributions v/d and VTW~'V/d,
respectively, without any additional normalization.

2. Main Result

In order to make the inference for 6,, we next approximate the limit distribution v/d and
VTW~V/d directly by frequency domain bootstrap method proposed by [1]. Since the model
does not have the finite variance, we make use of the results [1] and [3], and the proposed
self-normalized frequency domain bootstrap procedure is constructed as follows:

Step 1. Calculate the self-normalized periodogram ordinate fn(/ll,-) and its consistent estima-
tor f,(4;) foreach j=1,...,n, where f,(w) is constructed by Theorem 4.3 of [3].

Step 2. Generate the bootstrap samples {’ : j = 1,...,n} from the empirical distribution of
{&j:j=1,...,n}, where ; = sj/s., £;= In(/l])/f,,(/lj) and &, = )"}

118]

Step 3. Define bootstrap periodogram ordinate INj;j = f(1 DE;

Iterating the procedure above, we obtain B-times replication, and therefore we can approxi-
mate the distributions of D, (6y) and T,(6y) by the empirical distribution functions

#{D;(@,) < x} . #{T:(0,) < x}

Fop) = ——— and £, p(0) = —————.
where D7 (6) and T7(6) are generated by replacing I,(4 ;) in D, () and T,(0), respectively, by
I* ., and
n,j’

fy)
= arg %E(EZ 2L 0)

Theorem 1. Under some regularity condztlons,

Fp() = P(Dult) < )|

F700 = P(T(00) < x)‘ %o
for each x as n and B — oo.

By Theorem 1, we can construct robust inference for the pivotal quantity 6, of the infinite
variance model. This talk also provides some simulation results, and we observe that the
proposed method shows appropriate finite sample performance for heavy-tailed observations.

References
[1] Dahlhaus, R. and Janas, D. (1996). A frequency domain bootstrap for ratio statistics in time series
analysis. The Annals of Statistics. 24(5), 1934-1963.

[2] Fan, J. and Zhang, W. (2004). Generalized likelihood ratio tests for spectral density. Biometrika.
91(1), 195-209.

[3] Kliippelberg, C. and Mikosch, T. (1996) Self-normalized and randomly centered spectral esti-
mates. Athens Conference on Applied Probability and Time Series Analysis. Springer New York.
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A 7

Multi-step circular Markov processes with canonical vine
representations”

Hiroaki Ogata

Tokyo Metropolitan University

Let f1(6) and f2(n) be arbitrary circular density functions on II := [0, 27), and F} () and
F5(n) be their distribution functions. Also, let ¢g(-) be an arbitrary density function on II.
Then, Wehrly and Johnson (1980) proposed circular bivariate density function

f(0,n) = 2mg[2n{F1(0) — qF2(n)}] f1(0) f2(n) (1)

having marginal densities f1(0) and fo(n). Here, ¢ € {—1, 1} is a given non-random constant.
Apparently, this is associated with the copula representation. Consider a pair of linear
random variables (X,Y") and its joint density fxy(-,-) is expressed as

fxy(z,y) = c(Fx(z), Fy(y)) fx(x) fy (y)

where ¢(+, ) is a copula density, fx(-) and fy(-) are densities of X and Y, respectively. The
function 2wg[2m{ F}(0) — qF2(n)}] in (1) corresponds to the copula density.

Now, let {©;}:>1 be a sequence of random variables on II. Using (1), Wehrly and Johnson
(1980) naturally defined the stationary Markov process on the unit circle as

p(0r) = f(01), pOilOi1,...,00) = p(0:|0:—1) = 2mg[2n{ F'(0;) — qF(0:—1)}] f(0:)

where f(-) and g(-) are arbitrary densities on II, and F'(0) = foe f(&) d&. Then, p(6,) is the
initial distribution and p(6;|6;_1) is the stationary trantision density. This stationary circular
Markov process can be extended to k-step circular Markov processes® by use of the canonical
vine copula (Aas et al. (2009)). If the process {©; };>0 has 2-step Markov property?, the joint
density has the expression

fO1, ..., 0,) = [(01)f(62]01)f(03]02,01)f(04]03,00,01) - - f(On]On-r,...,01)
= f(01)f(021601) f(03]02,01) f(04]03,02) - - - f(On|On—1,0n2) (2)

*The research reported herein was supported by JSPS KAKENHI Grant Numbers 26870655.

!The term ”k-step Markov” is used here in the sense that p(0:|0;_1,...) = p(04|0;_1,...,0; ).

2For the simplicity, we consider 2-step Markov process here. The extension to k-step Markov process is
straightforward.



In general, a conditional density can be decomposed as

f (@, vj|v;)
f(vjlv-;)
for a vetor v.* Here, v; is one arbitrarily chosen component of v and v_; denotes the v-vector,

excluding this component. The function ¢, ,,,_; is an appropriate pair-copula density, applied
to the transformed variables F(z|v_;) and F(vj|v_;). Then, (2) is

f(zxlv) = = Cojlo_ 1 F'(x[v5), F(ujlv;)} - fla]vy) (3)

f(61)c2 1 {F (62), F(61)}f(0-) {1:[ C3 21 {F (0i4210:), F'(0i4110:) ez 1{F(0i12), F(Qz‘)}f(@'w)}

=1

In the circular process, the pair-copula functions are written in the form 2wg[27n{F\(0) —
qF>(n)}], and this leads to the final expression

f(br,...,0,)
= (2np {H f(9z-)} 921 [20(F(6:) — 2. (0:))]

{ﬁ 931 [QW{F(9i+2> - Q3,1F(6i)}} } {ﬁ 9321 [QW{F(GiJﬂ‘ei) — q3,2\1F(«9i+1\6i)}} } .

Here, f() is the common marginal circular density and ¢.[-]’s are arbitrary circular densities.
Moreover,

S (Bit2, 0)

f(9i+2‘9i) = f(0i>

= 27 g3 [277{F(9i+2) - Q3,1F(9i)}i| f(Oit2)
leads to the expression
Oit2
F6ualt) =2 [ gua[20(F(0) — a0.F(6))] £0 .
0

Similary,

FO,1160,) = 27 /0 " [2m (1) ~ 421 F(6)] 7).
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On improvement of generalized ¢—divergence goodness-of-fit
statistics for GLIM of binary data

Nobuhiro Taneichi, Kagoshima University
Yuri Sekiya, Hokkaido University of Education
Jun Toyama, The Institute for the Practical Application of Mathematics

We consider generalized linear models (Nelder and Wedderburn [3]) in which the re-
sponse variables are measured on a binary scale. Let N independent random variables
Y., a =1,..., N corresponding to the number of successes in N different subgroups be
distributed according to binomial distributions B(nq, ma), @ = 1,..., N. If we use a mono-
tone and differentiable function g as a link function, we obtain a generalized linear model

for binary data as follows.

(1) g(ﬂ-a):a’,aﬁ (0421,...,]\7),

where o = (Ta1,...,Zap) (@ =1,...,N) are covariate vectors and 8 = (f1,...,0p) is an
unknown parameter vector and p < N. We consider a minimum ¢*-divergence estimator
of model (1) and also consider a ¢-divergence goodness-of-fit test statistic based on the
estimator. Let y, (o = 1,...,N) be an observed value of Y,, (o« = 1,...,N), then the

minimum ¢*-divergence estimator of model (1) is given by

~go*

B :argrgneiélD(ﬁ*,
where
. Yo | Ve
Do — — N o * Na 1— 7, x| Na ,
o =y 2 Ma TP | T [+ (L= ma(B))97 | T

where ¢* is a real convex function in (0, 00) satisfying ¢*(1) = ¢* (1) = 0, ¢*' (1) = 1
06*(0/0) = 0, 0¢*(2/0) = limy—00 ¢*(u)/u, and O is an open subset of RP (Pardo [4]). The
maximum likelihood estimator is a special case of the minimum ¢*-divergence estimator.

In order to test the null hypothesis,

(2) Hg :ﬂ-azﬂ-a(ﬁ) :g_l(:ngﬁ) (O‘Zlv"'aN)a

we consider the family of ¢-divergence statistics based on the minimum ¢*-divergence

estimator
N Y, 1Yo

(3) Copr =2 ma (7876 | Do | + (1 —78)0 | —% | ¢,
a=1 T4 1— 74

where 74" = Wa(/égd) ) (@ =1,...,N), ng& = (Bf(ﬁ*,...,ﬁgd’*)' is the minimum ¢*-

divergence estimator of 3 under H§ given by (2) and ¢ satisfies the same conditions of



¢* (Pardo [4]). The family of test statistics Cy given by (7) in Taneichi et al. [6] is Cyg=
when using the maximum likelihood estimator, and therefore the family of statistics given
by (3) includes that of Cy.

Under H§, all members of the class of statistics Cyy+ have a X?V—p limiting distribution,
assuming a suitable condition. Using the results, we can use Cyy+ as a goodness-of-fit test
statistic for model (1).

However, in the case in which all n,,a = 1,..., N are not large enough, such an
approximation by a X?V—p limiting distribution to the distribution of D under Hy becomes
poor. So, there are risks that the hypothesis test based on large sample theory will give
results opposite to those of an exact test. In this presentation, in order to reduce the
risks, we propose a new transformed statistics C<£¢>* of Cyy+ whose speed of convergence
to a chi-square distribution is quicker than that of Cyg+. To construct C’q{qj*, we use the
following procedure. First, we consider the asymptotic expansion of the original statistics
Cés(;s*» which is developped by Yarnold [7], Siotani and Fujikoshi [5], and Taneichi et al. [6].
Next, we obtain transformed statistics C~'¢I)¢* by performing improved transformation ([1],
[2]) to Cgg+ on the basis of continuous term of the asymptotic expansion. As a special
case of ¢—divergence statistics, we consider power divrgence statistics and executing a
Monte Carlo simulation. By the Monte Carlo simulation, we find that the performance of
transformed statistics C‘é(ﬁ* is much better than original statistics Cys+ in models given by
the logit link, probit link and complementary log-log link. We also find that the power of

statistics C~’¢[)¢* is almost the same as the original statistics Cgex.
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The [, consistency of the Dantzig selector for Cox’s proportional
hazards model

Kou Fujimori* and Yoichi Nishiyama

Waseda University

Let t ~ N;(t), ¢ = 1,2,...,n,,t € [0,7] for fixed 7 > 0 be counting processes which do not have
simultaneous jumps. Suppose that the intensity of NV;(¢) has the form

Ni(t, Zi) = ao(t)Yi(t) exp(Z] Bo),
where Y;(t) is the at risk process, ag(t) is a nuisance baseline hazard function, Z; = (Z},Z%,...,Z/") is a
covariate vector, and Sy € RP* is an unknown parameter. We are interested in the estimation problem of

Bo in a high dimensional and sparse setting, i.e., p, > n and the number S of nonzero components of gy is
relatively small. The log-partial likelihood is introduced by

L3 [ 1285 055, )haN )

Let the gradient of I,,(8) be U, (), and Hessian of [,,(3) be —J,(5), i.e.,
g1
Uu(8) = Z/<Z§1>ﬁwm

n Saﬂv> (§f>@%@uﬂdN@¢

%ww:JAm:fA

where S¥(8,u) Z Yi(u)exp(ZF B)ZE* and N(u) = Z N;(u). Moreover, we assume that there exist
R-valued function s (6 t), RP»-valued function s.(8,t) and Pn X pp matrix-valued function s2(f3,t) such
that

sup sup Sl L(B,t) — sk (B, t)H —P.0,1=0,1,2,

BERP te[0,7] 0o

We define the p,, X p,, matrix I,,(5) by

Mm:éw3m> C@meﬂwﬁm%wm

Now, we define the estimator of 5y by
B i=arg min [|Bll1, Bo:= {8 € R : |[Un(B)lloo < 7}

To prove the I, consistency for ¢ € [1, 0], we define some factors for I,,(5o).

*wisteria_forest@toki.waseda.jp



Definition 1. For every index set T C {1, 2, --+, p,} and h € RP" hp is a RITl dimensional sub-vector
of h constructed by extracting the components of h corresponding to the indices in T. Define the set Cr by
Cr :={h €RPn : ||hre|1 < ||h7|l1}. We introduce the following factors.

(A) Compatibility factor
Sz (" In(Bo)h)2

K (To; In(Bo)) == O;AhGCTO IZaE
(B) Weak cone invertibility factor
LT L (B’
FolTo3 InBo) - = Oi}ilngTo : |TZTOIF1(|/|8;L))|ZL) 1€ [heo)
Foo(To; In(fo)) osilh, W
(C) Restricted eigenvalue )
RE(Ty L(fo)) = nt, L0,

where Ty == {j : Bo; # 0}.

Using these factors, we obtain the following results. Hereafter, put logp, = O(n¢), 0 < ( < a and
V= Ynp, = Ki1log(l +p,)/n®, where 0 < o < 1/2 and K; > 0 is a constant.

Theorem 2. Assume that liminf, o &(To; I.(5o)) > 0. Under some regularity conditions, following (1),
(44), (¢44) and (iv) hold true for some positive constants Ko, K3, K4 and the random sequence €, = 0p(1).

(1) It holds that

. Koo + Kse,
lim P (wn B2z H) 0
n—o0

REQ(TO; In(ﬂO))

(it) It holds that
4K4S'Yn,pn

HQ(TO; In(ﬁO)) - 4S€n) =0

lim P (||/3’n — Bollr >
n— o0

(13i) For all g € [1,00), it holds that

1 1
. A 2S¢, 2K, S’ym ” 2K, Saym .
nh—>H;oP <|Bn BOHq = 4 P 1 P )> :O

Fy(To: In(Bo))  #2(To: In(Bo)) — 28¢n  Fy(Tor I (Bo)
(iv) It holds that

. A K M,PDn +K €n
lim P(wn Boll? ”)

T F2 (To; 1n(Bo))
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A 1 0
Shrinkage estimators of Poisson means based on prior information and its
applications to multiplicative Poisson models

HEXZ ik Jox,  BESHRBAKRZE BE Sk

0.1 EL®IC
X1, Xp ZBENIHSIIZRT Y VA6 Py(N)i =1, -+, p(> 2), IZ U2 HERERE § 5, 1ML 2 Jegiein

J:B8# (normalized squared error loss)
LGN =D A (A= n)? (1.1)

BEMEL L2 & BEE N = (A, -+, A\p) DFEIFHEEMEIZX U T, Clevension & Zidek (1975) 135 s/

B Y
1 )
cz — 1_L : =1
A2 (X) ( » 1X“ t=1,...,p,

ERREU, 22T, Z2=Y" X Thd, o(2) BIHEWMPBE. 0 < p(2) <2(p—1) % SI1EZ DHEE &L A RHE
FRX = (X, X,) 2BET B2 L 2mUr, UL, W onD N, BREAIETHBHE. FAIHNT 21
ERIIKERRREZE X5 LI1E5 A%\, Ghosh, Hwang and Tsui(1983) 3 & O Tsui (1984,1986) 1. $8& L 7=IE&
DR D D WFNEPH R R ICHENT DHERZIRE L2, LA L, WX CREINZHERIZDOWVWTIE, dEED
KD D B, X512, KTV VEEEYIT simple tree order §ilfIA % 254512, isotonic regression #E R Z MR T 5
FHiEEREET 5, F£7-. multiplicative Poisson models TD RS D FIRHEEMES BLY EF, TERHEHE A DHE/N
WERZRET 5,

0.2 SHRIBEHRANDHEN

ZOHiTIK, BEINIFALEROIEFRIENORENEHR LT 5, I0AKIE LT, BFEYIZ simple tree order #ilfY
M3 256, isotonic regression HEE & & /NG B RIRHEE =2 RET 2,

1) EBREADHEN 10, >0,i=1,---,p& L. WIEAEC ={(v1,...,2p)|1; > a;i=1,...,p} EXTDA Y
TR I LB, a NS BHEREEDEDLSITE R B,

)\Z(X) = Xi — @(Zc)%lc, ’i = 1, BRI N
ZIT. Ze="(X;—a;)) THYH, d>0ThH 5,

HAEA C T (1.1) DEEBEHEO T T, X & AX) = (M(X),..., (X)) EOFFEEDEZFMM L, A(X) 27X
EWRT 57200+t E2OEDEBTEZ 5,

FIE 2.1 p>2& L. o) 2IEWAOEKE T5, HEBK (1.1) OFT. AX) B X 28R T 57200 951X
0<9()<2(p-1), d>supp(-)/2 TH b,

W, 5k >2T LT, MAEECy ={(z1,...,2p)|vi > asi=1,... kz;<aj,j=k+1,...,p} £T 5,
ZDEI% 22 —p— 1 HOHENNIHERBENEEDETNTNT a; ITHNT D EOBMETEEZEZEZD, 20D, X,
DEE,

(Xi — a;) )
S\Z(X):{ Xl (pk(ZCk)ZCk_’_dk, Z—l,...,k‘,
Xi, i=k+1,...p,

kFRD, TIT. Zop =0 (Xi—a;) THY, d, >0Thb, FHMNEAT X & AX) & OFIRED %%
fligadZeT, MX) DB X 2UETE20D D&M E2OEDEMTEHR B,
IR 2.2 o (1) ZIEBAOBEE T35, HEEE (1) OFT. AMX) X 2WET B0 050 < o) <
2(k —1), di, >suppg()/2 TH 5,

2) JEFFREtEA DD 1 p >3 & L. BUME X1y = min{Xy,..., X, } TN 5 &5 kit gz

) X, — X
Ai(X) = X; — w(W)IZ/Vi—&—c(Z)’

EEAD, ZIT. W =YL (Xi— X)) Th5,
EIE 2.3 o) FFHEROBEBEL T2, BEBEK (1.1) OFT X(X) NX ZHRTE2ODF05EMIFZ0 < o) <
2(p—2), d>supp()/2 TH 5,

Z D+ M IEARZER % p HDOENZHEK D EE I 0 2, BEETOEEELDOEZ2FTMGT AL T
~EINB,



3) A — &I simple tree order HIHFHNH DIFEDEBFHE: X, ~ P,(\),i = 0,1,...,p IZHEW,
REIZ simple tree order flFIZRM:. N < Niyi = 1,...,p DD BEE. X D isotonic regression HEE & T —MEITIRD
Foit5za6n5,

S st X fori € S°
ATX) = { Ax(S), fori € 8,

TIZT S ={0,1,..., Kk}, Sc={k+1,....,p} THY. Ax(S) = Dics Xi/(k+1), X; > Ax(S),i € S¢ TH 5.
p—k>2%51F AHX) ZXD & S IHENT B,

X, — Ax(S .
S\TH(X) _ X’L - @pfk(WSC)WSTZZ((k), fori e S
(2 c D—
Ax(9), fori € S,

TIT Wee =Y ege(Xi — Ax(S)) TH 5,
I 2.4 AR (1.1) O FTA(X) A VX)) 2BET 2720005 MEp—k>2,0< ¢, () <2(p—k—1).
Op—i(-) > 0 FIEFDBIE. dp—r > supp,_i()/2 TH 5,

0.3 multiplicative Poisson models TDRFH D[R BFH EBE DIt

AHiTlE. multiplicative Poisson models TORPE D [FRIRFHEERE Z & A, RAHEE & % PG E AN T 5
EmERET D,

multiplicative Poisson models X; i, i, ~ Po(Xiyiy..i,) E FRLD KD ICRKIAI NG, X =D N4y i, £ T D&
Nisyi) WIRD & 5 1 EHE 13,

/\i1i2...iJ = /\aulagh...aJU,ij = 17"'an7j — 1’.”“]’
Z I T,
I
ajij>0,2ajij:1’ j:].,J
ij=1
Td %, Hara, Takemura(2006) (& A= {\; s, ;, } DEAHEE =
I, %7,
\ ke M LA I . n
)‘%ig.]?.i] = (X+)7-1’ if XtT+£0
0, if Xt=0

ZEH U, EYEAL 2 BB

IJ
L(s,A) = Z Z Y ! —(Oiyiniy = Nininiy)’ (3.1)

BEUEL U & BHtERE 2R AIZHE/NT % Clevension-Zidek X 1 THEE B RE L 7=,
ZZ T, AT ERIEFRREREICHNT XD RETEER2E X 5, k-th layout D IR & MRS

I,
+_ _ N
Xy = E Xivig.ires Xt = Z X
is:5#£k ip=1

%% U, k-th layout ®EAERDORZ bV X = (X,;ﬁl,...,X,;f,k)’,k =1,...,K 2§ %, k-th layout D& EE

X=X ik = 1o I} RIEFREHRAORUMEER X () =min{X[,. X0 5 M = {3, )
- Héﬂ X;fl-j X = Xi,
LIPS | A ) ¢ @k(Wk)M
irig...i (X )71 sk Wi + di
EZDBH, ZIT
Iy
Wi= 3 (X, =X )
in=1

ThHb, UFOEHIELNS, ] )
T 3.1 1, >3%% Uy o) RSB E T 5, HEBK (3.1) O FT N ARAHEEE AMLE 2 KET 570
D+ &A1

0< pr() < 2005~ 2), dy > P

Thd,
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Bartlett correction of empirical likelihood with unknown variance
Kun Chen (Southwestern University of Finance and Economics)

Bartlett correction is one of the desirable features of likelihood inference, which allows con-
structions of confidence regions for parameters with improved coverage probabilities. In this
paper we study Bartlett correction for frequency domain empirical likelihood based on the
Whittle likelihood of linear time series models. Previous studies demonstrated the Bartlett
correction of EL for independent observations, Gaussian short- and long-memory time series
with known innovation variance. Nordman and Lahiri (2006) showed that frequency domain
empirical log-likelihood ratio statistics does not have an ordinary y2-limit when the innovation
is non-Gaussian with unknown variance, which restricts the use of empirical likelihood inference
in time series. By profiling out the innovation variance from the Whittle likelihood function, we
show that the empirical log-likelihood ratio statistic is y2-distributed and is Bartlett correctable.

In particular, orders of the coverage error of confidence regions can be reduced from 1/n to 1/n?.
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Locally stable regression without ergodicity and finite moments

Hiroki Masuda
Kyushu University

Model setup. Given a complete filtered probability space (2, F, (F¢)er, , P) with F; = o(Xo)V
o(Js;s < t), we consider a univariate stochastic process process X = (X;);c(o,r) defined through

t t
Xt:X0+/ a(XS,HS;a)ds—i—/ (Xs—, Hs—;7y)dJs,
0 0

where: the initial random variable Xy is Fp-measurable; the driving process J is a pure-jump
Lévy process independent of Xy and having the Lévy-Khintchine representation

() = exp {t( /lzgl(eiuz S —ius)u(de) + /Z|>1(em _ 1)u(dz)>}

fort € Ry and u € R; the trend coefficient a : Rx©, — R and scale coefficient ¢ : Rx©, — R are
assumed to be known except for the p-dimensional parameter 6 := (a,7) € O, X ©, = O C RP,
with ©, € RP* and ©, € RP¥ being bounded convex domains. Assume that the true value
0o = (a0,70) € © exists, and that we only observe a discretized step process Xt(") = X|t/hn >
t € [0,T], where the sampling step size hy,, = h := T/n — 0 for a fixed terminal sampling time
T. Further, we assume the following regularity conditions.
(1) Regularity of the coefficients: (a, c) smooth enough, with a(-,-, ag) and ¢(+,-,70) globally
Lipschitz; ¥(z,y), sup, le(z,y,7)| 7! < K(1 + |z| + |y))¥ for some K > 0; the process
H = (Hy)iepo,r) is a strong solution to a smooth stochastic differential equation driven
by J and another Lévy process J' independent of J (the details omitted).

(2) Identlﬁa’blhty (a’(" K OL), C('a 77)) = (CL(-, K O[()), C('a '770)) > 0 ="bp.
(3) Vn Jg 1fu(y) — ds(y)|dy — 0, where fj, denotes the Lebesgue density of L(h=Y8.7,) and
¢ the standard S-stable density corresponding to the characteristic function u e~ ul?

Some of them could be weakened in compensation for more complicated descriptions.
Results. We introduce the stable quasi-maximum likelihood estimator (SQMLE):
- 1 A; X — haj—1(«)
On = , € 1 J J ’
n (Oén ’Vn) aregenéax Z og { hl/ﬁ ( )QSB < hl/ﬁcjfl(’)/)

7j=1 n Cj—1\Y

where ¢; 1(7) := e(Xy;_,, Hy;_,;y) with a similar manner for a;_1(a). For an a.s. positive defi-
nite F-measurable random variable A € R? ® RP, we denote by M N, (0, A(w)) the mixed normal
distribution £(AY2Z) where Z is a p-dimensional standard-normal random vector independent
of F defined on an extension of the original probability space.

The next theorem clarifies the asymptotic distribution of the SQMLE.

THEOREM. Under the aforementioned setting, we have the asymptotic mized normality
— A ~ L _
(Van' =9 (G = a0), V(3 —0)) 5 MN, (0, Tr(00: )7 |
where I'r(6o; ) := diag{Cua(B)X1,a(00), Cy(B)X1~(70)} with

cu) = [ (8¢ﬁ<y>>2¢ wir. )= [ (14 aj()) 95(y)dy,

T {0y e( Xy, Hy; o) 12
XnHt,’YO)

{8 a Xt7 Hta Oé())}®2
XtaHt770)

Yra(bo) = dt.

dt, X7(70)



COROLLARY. Under the same situation, we have the asymptotic standard normality:

(P42 R i — o), D2 (6 — 0)) S N,(0.1,)

where fT,an =C, (B)i]Tan and f‘TA,n = C&,(B)ETWZ with

1t {0a a] 1(4n) }*2 1 {9, CJ 1(9n) 1%
ETan - Z G- 2 1(9m) ’ fon Z 1)

Remarks.

(1)

(2)
3)
(4)

(7)

Under (3) the driving Lévy process J is locally (small-time) [-stable, that is, the limit
distribution of E(h_l/ BJ,) for h — 0 is standard -stable. This property is satisfied
by many specific Lévy processes such as the generalized hyperbolic, Student-¢, Meixner,
stable, and the (normal) tempered stable Lévy processes. Moreover, J can distribution-
ally approximate a Wiener process by controlling dominating parameters in a suitable
manner.

aaa(x7y7a0)
C(w,yﬁo)

dyc(@,y,70)
. . . . . 7 C(w,y770)
are non-random; this is the case especially if X is a Lévy process.

The asymptotic distribution of 0,, is normal if both z and x —

The estimators &, and 4, are asymptotically orthogonal, whereas not necessarily inde-
pendent due to possible non-Gaussianity in the limit.

For 8 € (1,2), we can rewrite THEOREM as (recall that h = T'/n)
(nl/ﬁil/z(dn - aO); \/ﬁ(;}/n - ’YO))

£ MN, (0, diag (7> VP Co(8)S1.a(00)} 7, {CV(B)ET,»Y(%)}’I)) :

If fluctuation of X is virtually stable in the sense that both of the random time averages
Y1.4(00) and X7 (7o) do not vary so much with the terminal sampling time 7', then the
asymptotic covariance matrix of &, would tend to get smaller (resp. larger) in magnitude
for a larger (resp. smaller) T this feature is non-asymptotic in 7.

Of special interest is the locally Cauchy case (8 = 1), where H,, is fully explicit. The
corresponding asymptotic distribution of (v/n(&, — ag), v/n(¥, — Y0)) is the centered
mixed-normal with the random covariance matrix given by

dlag{< / {0aa (X, Hy, a0) }*° )_1 < / {36Xt’Ht770)}®2dt>_1}-
2T Xt,Ht,’yo) 2T XtaHt770)

This formally extends the i.i.d. model from the location-scale Cauchy population, where

we have y/n-asymptotic normality for the maximum-likelihood estimator.

It is also possible to deduce large-time counterparts to THEOREM and COROLLARY under
the the ergodicity. In that case the asymptotic distribution is not mixed normal but
normal, with the asymptotic covariance matrix taking a completely analogous form.
The result formally extends the Gaussian quasi-likelihood estimation of diffusion.

We conjecture that our SQMLE is asymptotically efficient in the present setting; it is
the case for some special models.

See [1] for further and full details in absence of the covariate process H in (a,c), as well as

for many relevant references and background materials.

REFERENCES

[1] Masuda, H. (2016), Non-Gaussian quasi-likelihood estimation of SDE driven by locally stable Lévy process.
arXw:1608.06758
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Recent developments in inferences for
conditionally heteroscedastic location-scale time series models
Sangyeol Lee (Seoul National Univ.)

This study examines the asymptotic properties of a class of conditionally heteroscedastic
location-scale time series models with innovations following a generalized asymmetric Student ¢
distribution (ASTD) or an asymmetric exponential power distribution (AEPD). We first show
the consistency and asymptotic normality of the conditional maximum likelihood estimator
of the model parameters under certain regularity conditions. Then, based on the maximum
likelihood estimator, we estimate conditional value-at-risk (VaR) and expected shortfall (ES) by
using their closed forms induced from the model. Their performance is finally compared with
that of conditional autoregressive VaR and expectile methods. To ensure the adequacy of the
model in advance of the VaR and ES calculation, we develop an entropy-type goodness-of-fit
test based on residuals and a residual-based cumulative sum test to conduct a parameter change
test. To handle the former, we also investigate the asymptotic behavior of the residual empirical
process.
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Large sample behaviour of high dimensional autocovariance matrices
when the dimension grows slower than the sample size
Arup Bose (Indian Statistical Institute)

Consider a sample of size n from a linear process of dimension p where n,p — 0o, p/n — 0. Let
', be the sample autocovariance of order u. The existence of the limiting spectral distribution
(LSD) of ', 4+ I'*, the symmetric sum of the sample autocovariance matrix I', of order u,
after appropriate centering and scaling, has been considered in the literature in exactly one
article under appropriate (strong) assumptions on the coefficient matrices. Under significantly
weaker conditions, we prove, in a unified way, that the LSD of any symmetric polynomial in
these matrices such as [y + f‘z, fufz, f‘uf‘z + fkf,’;, after suitable centering and scaling, exists
and is non-degenerate. We use methods from free probability in conjunction with the method
of moments to establish our results but unlike in the case p/n — y € (0,00), the embedding
technique does not work in this scenario. In addition, we are able to provide a general description
for the limits in terms of some freely independent variables. The earlier result follows as a special
case. We also establish asymptotic normality results for the traces of these matrices. We suggest
statistical uses of these results in problems such as order determination of high-dimensional MA
and AR processes and testing of hypotheses for coefficient matrices of such processes.
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Monte Carlo filtering and data assimilation
Hans R. Kuiisch (Seminar for Statistics, ETH Zurich)*
Joint work with Marco Frei and Sylvain Robert

The problem of estimating the current state of a latent Markov process based on a sequence
of partial and noisy observations up to the same time is called filtering in engineering and in
statistics, and data assimilation in the geosciences. In the linear Gaussian case, the Kalman filter
provides the exact solution in a recursive form, but for nonlinear and non-Gaussian cases one
has to rely on approximations by recursive Monte Carlo algorithms. The two most widely used
such algorithms are the particle filter and the ensemble Kalman filter. The former originated
in statistics and engineering, the latter in the geosciences, and until recently there was little
exchange of ideas between these two areas. In this talk, I will describe the basics of both
algorithms, discuss their strengths and weaknesses and present some recent proposals that aim

to combine their strengths.
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Statistical inference for misspecified ergodic Lévy driven
stochastic differential equation models

Yuma Uehara
Graduate school of Mathematics, Kyushu University

Currently, we can obtain high-frequency data stemming from time varying phenomena, such as log
returns, spike noise of neurons and so on. To better describe their non-Gaussian random behavior, Lévy
driven stochastic differential equation (SDE) model is regarded as one of good candidate models. In this
study, we tackle the parametric estimation problem based on high-frequency samples in the case that
the coefficients of Lévy driven SDE model are partly or fully misspecified. The outline of our result is
presented below.

We suppose that the data generating model is the following one-dimensional SDE model:

defined on a stochastic basis (2, F, (F;)er, , P) where:

e X is an Fp-measurable initial variable;

e 7, is a Fi-adapted one-dimensional Lévy process without a Brownian part being independent of
X and it satisfies that F[Z;] =0, Var[Z;] =t, and E[|Z:]%] < oo for all ¢ > 0;

e The coefficients A: R — R and C : R — R are measurable.

We also assume the ergodicity of X. Hereinafter we write mo(-) and vo(-) as an invariant measure of
X and Lévy measure of Z, respectively. Under high-frequency samples (X, ..., Xy, ) from (0.1) being
obtained, we intend to assign a parametric one-dimensional SDE model such that

dXt == G(Xt, Oé)dt + C(‘th,7 ’}/)dZt, (02)

where functional forms of coefficients @ : R — R and ¢ : R — R are known up to finite-dimensional
unknown parameter 6 := (a, ) being an element of bounded convex domain © C RP. We also suppose
that t; = t7 = jh, for any j € {1,...,n} with h, — 0, nh, — oo, and nh? — 0, and that true
coefficients (A4, C)(:) are not in the parametric family {(a,c)(:,0) : § € O}, that is, the misspecification
concerning coefficients occurs. To estimate an optimal value of 6 in a feasible way, we utilize Gaussian
quasi-likelihood approach attaching importance to the tractability and its broad applicable range; the
optimality is herein determined by maximizing the limiting function of a quasi-likelihood random field
which will be introduced below. The goal of this study is to verify the asymptotic behavior of Gaussian
quasi-likelihood based estimators 0,,.
Our estimation scheme can be expressed as follows:

1. Drift-free estimation of v. Define a maximum contrast estimator 4,, by
n

A 1 (A;X)?
An € argmax Gy () | := — hnlog 1 (7) + 52 )
oGO (= gy e

2. Weighted least square estimation of c. Define a maximum contrast estimator &, by

1 o (AX — - 2
Gy € argmax Gy () | == Z( J hnaj—1(a))

aed, nhy = hnc?—lﬁn)




Here A; X and f;(-) denote X;, — X;, | and f(Xy,,-), respectively (f is a R-valued function). As was

mentioned above, we define an optimal value 6* := (a*,7*) of 6 in the following manner:

7 € agmaxG() (:: _ /R (log 2(z,7) + m> Wo(dm)> ,

o € argmax G(«) (:: —/Rc(ac,w*)ﬂ(A(x) - a(x,a))Qwo(dx)> .

ocEC:)a

For such estimator én := (Yn, &), we derived its tail probability estimates and asymptotic normality
under suitable regularity and moment condition:

Theorem 0.1 (Tail probability estimates). For any L > 0 and r > 0, there exists a positive constant

CL, such that c
sup P(|/nhy, (0, — 0%)] > r) < L

neN

Theorem 0.2 (Asymptotic normality). We introduce p x p-matriz I' := < O T
«@

1s defined by:

Ty O> and each component

(*(x,7") = C*(x))mo(da)

2% c(x, y* ez, v*) — (Dy¢(x, 7*))®?
r,:= 2/
R

c*z,v*)
oz, y*))®?
4 /R WOQ(x)wo(dx),
B2q(x, a* wa(z, a*))®?
r,:= 2/ 80‘62(:15’;*))(14(3;‘) —a(z, a*))mo(dr) + 2/ Wﬂo(dx),

where ®2 denotes the tensor product. Then, there exists a nonnegative definite matriz ¥ € RP Q RP such

that X
Vb (6, — 0*) =5 NO,T-'s(rHT),

In addition, if fi and fo are twice differentiable and their first and second derivatives are of at most

b)) b))
polynomial growth, the explicit form of ¥ := (Z—F’ ZO‘"Y) is given by:
ary @

_4// < 3z, 1) 02( )22—fl(x—f—C(x)z)+f1(x))®27r0(dx)u0(dz),
S [ (a”” 2(0):2 = i+ O + 1(2))

3z, v)
M — X X))z X T7T X )V, z
(% ew: - ale+ 0@+ o)) moldom(ds),
Oz, a* ®2
ma=t [ [ (2D - et Cw) + o) maldehnli).

As can be seen from above theorems, the convergence rate of 0,, is /nh, and actually this is the same
in correctly specified case (Masuda and Uehara [1]). This is a clear difference with the diffusion case.

References

[1] Masuda, H. and Uehara, Y. (2016). On stepwise estimation of Lévy driven stochastic differential
equation., in Japanese, submitted.
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Bartlett correction to the likelihood ratio test
for MCAR with two-step monotone missing data
HEgE 58 (MF KT REZEGBFHBIZAER
PEIl EH5h (FERY RET)
a1 B = B N1 SRV NE b N R 2 T Sy

A|ETIEIRAT — R A= LD 1 DTS Missing Completely at Random (MCAR)
DEALIZ BT B EEREZ o 72, RElT — & A = X L&, @A RE 2 REIET — &
fRMTIE % EING 2 ECEHEHERNETH 5.

RABIE T — 2T EED < BB, p RoTBIR S PV X = (X1,...,X,) & pIRIGRHM
BEERZ PV R = (Ry,...,R,) OEAMIZESWTHKI NG, 2212, RIZFX ITE
FREMDEEERTHEERRT MLVTHY, i=1,...,pIlBVWT R =102 & X, DEH,
R=00t& X, ORMERT. Z0&&, LEREEIEE X ORMEIZRAEEZ EATWS.
7z, BRI X DRHADNTA—=RIZWNTEREFERE RDODHDIINT A —RITHKIFET
. IS, RUT—RANZALZFAET DI EPRBELIRED, ZYRE T I EERT
2ZEIXHEETHD. LELEBRS, RUlT—ZAD=ZZXLNPMCAR THD L &, KFED
RPAR =2 DT =Ry NDAEHNT X ODRHD/NTA—ROMEEITI ZLNTE
%. 97205, MCAR A& D 32D F Tl Listwise deletion Z#H$ 2 Z L WA[REL 725 (H
Z X, Little and Rubin (2002) % 2#).

AW TR p RTIERRERAD S NHD S v X LEAX; (j=1,...,N)BEohike
U, RN Z— U DRGHRITH 58556 & e U7z T, Little (1988) 235-Z 7= MCAR @
IR $ 5 L RER B ORI U, WoRER 28 Uz, RlE T, i
D7z, KFIS R — 2V F 2 DEFARE T — & (2-step HFARE T — X)) DGZE, T72bH pik
THREANZ MV XGR; =1, & Ny, D) (= 1,...,Ny) & dRIEEEARRZ by

1 i.1.d. .
XlR = (o ) Nl ) (= N 1
0, 4
NRoNZGEEZEZD. 2212, d<p, N=N+ Ny, 1, % 1 ZITITE D pIRTLEHN
7 MV, X1 3 X; DARTAERT PV THS.

2-step BRI T — X DR T, MCAR D RALIZ BT 2 (i i e 1

H: M = Vi, lez\ljllVS.A:#H

WX BARHMERMEE LTRSS 2N TES. 221, py, Xy 12N TN, vy, Uy DK
IS 2 p DRENT ML, S OREITHTH S, - T, HRELRBOHEZHL 72
Little (1988) O JG thkrE fiat &

-1
T = Z/< (WF,ll + WL,H + ZZI)) z+ n{ln

1
n

1
E(WF’H + WL711 + ZZ/)‘
-+ tr[(WF’n + WL,H)(WF,H + WL,H + ZZ/)_l] — d}

1
—Wrn

ni

1
—Wr
no

—nqln —ngln



72/%‘5 ZZC: 7’Lg = Ng— 1 (g: 1,2), YlF = Nl_lz;v:llej, YlL = N2_1 ;y:NH—lXU?
z

N o o N o o
Wri = Z(Xu — X1p)( Xy — Xir), Wi = Z (X4 — X1L)(X1j - X))
j=1 j=N1+1

Thb.

A TIE, Nagao (1973) & FRRDE R OB H 8 %2 W T, WREREE H KO K
AWHEPERL A ny,ny — 00, 4, =ng/n — ¢, € (0,1) (¢ =1,2) DT, T Oy 72K
ESp

o(t) = (1 —2it)"%|1— 22&9(5){1 —(1=2it)""} +0(n™?)

ZE W U7 (G2 D\ Tk, Shutoh, Nishiyama and Hyodo (2016) 2 &8). 2212, f =
d(d+3)/2,n=n1+ny, glc) = 2d* +3d - 1)(c = 1)+ 6d, ¢ = X, ¢, T 5. £/, ki
DFER % FIZ U T, Bartlett E1E % jiti U 72 e aH &

5= <1 - 5) T k= 6(2(?3)

EREL. ZOMEMEIREIEPr[Ts < 2] = Pr(z)+0(n™?) 2{i7zdHDTH5. ZIIZ,
Pr() \ZEHHE f DO 2-DADIHEBTHS.

BRI, BUEERZ 1TV, T RO Ty DEHHE f O \2-0A~NDPROkF2EL L. B
Rz 1

(p,d) = (4,1),(4,2), (4,3), M = N; = N, = 10,15, 20,25, o = 0.10,0.05,0.01

ENIA—RELUTHEZ, ¥Y3ab—YaryTEALGNE T KU Ty D46D LM 100a%
REBAME f O 22440 B 1000% R xF(a) ZHERU 72 BUEFEBROKER,? 5, M AL
BN S WRI FIZBNWTE T DD Bl 1000% UL xF (o) OELIFIEEL <, KK
HOBMEFRCEIT LT RTOHHIIENWT, T 13T & 0 B IERICHRAKMEZ R OME
MatBTH 2 Z & 2 BUARICHER L 7.

S 3k
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Multi-group profile analysis

for high-dimensional elliptical populations

PN TSRV = EEE S e

5 g FEEHI 5 OIHEBBIAE X1, X~ Col€ o Ay) & Uy Xa s X
Xots oo Xy BECHTEE TS, 2720, g=1,...,a THY, O(E, g, A,) 1XHEF A
Th5.

707 4 =V, ARG, — B EREH, SEIEMEARGR D 3 D DE A D B, — Bk
I & SR, AT AR D Lo 72 R TORIMTH 5. AR TE D HAE
WAREEARIZ B W T, Srivastava (1987) A%, 2 DO IERFHERIZ N U TR HMIE %2 A\ 72
T T 4 =i ERE L. 72, Okamoto et al. (2006) &, #MAERM D T, BUEH
F1 5 D Ve 7 A7 O W R B & #8 8 E 2 W TE R U 72, Maruyama (2007) 1&, Kano (1995)
TRESINFEEZFAHL, EESHRENO T T, BIERREH RO 575 O & B % 5
UZz. LU, REHBER, IEPEABREI D B REVERTT — XU TEEHATE
72\, % 2T, Takahashi and Shutoh (2016) (3552 8 &2 U 72 2 D O IERKREEE NN N
THRRICIIBIT D70 T 4 =V aRE L. £72, Onozawa et al. (2014) &, 38
PSR E TR 2 DDIEMRERIIN T 5 ERtic B 5 70 7 4 — Vo 2%
U7z. & 512, Harra and Kong (2016) &, S 8MEN LT U EBE TR k(> 2) HD ER
RIS 2 @Rtz BT 5 70 7 « =t 225 L7, AiF%ETld, Harra and Kong
(2016) DFERZFEHIREMANIERL, 707 0 =V HHIZ BT 2 3 DO XS 2T Bk
EERELU. 7074 —VacBd % 3 2DRFIF T DO LS IckINnd:

(i) SEATMEARE Hon Mg — Mg = Ygl, V.S, Ap i not Hyy.

(11) *iﬁ‘[‘i{}i%ﬁ H02|H01 = = Ya-1 = 0 v.s. A02|H01 : not HOQ‘HOL
(111) Iﬁiﬂ‘l\i'ﬂigﬁ HO3’H01 . ,ugl = = ,ugp V.S. A03’H01 : not H03|H01.

(i), (if) % po= (), ... W) B ANTEE AL L LFD LS IIRSND
(1) SEATHEAREL Hoy : o' Kapp = 0 v.s. Agy : not Hy;.
(111)) Sp‘iﬂ‘l\i’ﬂigﬁ H03|H01 : [,L/KB/L =0 v.s. A()g’HOl : not H03|H01.

::T, KAB:Pa®Pp7KB == (]-a]-;)@Pp- flf:b, Pk:Ik—k_llklgg

AW T, TD3DDRFITH LT, BMEMEE T, 2T EThG5ZX 7 KL,
¢ € {01,02,03}. J#LZAKED FT, Ty ORI 2 U7z, BARIIZIE, < VF V7 —
WS HFMRREM Z ST 5 Z & T, WY RRED T Ty & Tos I FMNEERMEEZET S

1



e oT. iz, Top FZRBETOMBREHEZJGM TS5 2 & T, MY 2ED FTHH
ED a—1D X2 BAEITHKD 2D bhrotz. ZThoDFERIZEDE ELME A% 52,
TN S DN ) & 255 1 RO EERAER 2 X 7z

BUEFEBRIZB VT, RETFEOARIE - AREAIZE T 25 1 FO@ERMEE B X UK
HADED T WaF R Uz, BERIIZIE, BHMED 7 7 AIZET % (D1) 2REIERI,
(D2) 24 & -5, (D3) XL 8T 77 A046, (D4) BRN—Hk0 16 & BEEEF 2RI /RE L,
Harra and Kong (2016) QiEUMRIE & R ETFIERDLE 21T > 72. T2 T, KiZ, (i) & (i)
DHEIZN U TEE TS, (D1) & (D4) IZBWT, MEFIX L BITMADOTIEDOSE 1 Mo
MOMERIL, LHIZHH EOFRKEL JIZELEDS D572 —F, (D2) & (D3) IZBWT
&, TATIHE DO FIRDHE | FOERDOMERIIHH LOREAEZ KE S FRISMHEAIZDH - 72
DIZH U, "EFIROHE 1 MIOEGROMERIIHH LORFRKEL JIFELD SR o7. X
7z, AT DO FIRIZ, (D2) & (D3) IZEWTH LU KRN AME T T 203, REFIROM L
FZIFEET LRV EAMER S Nz,

PAE& Y, MEFRIZETHEO TR, BENMDHIZEAL TONA M RFIERTH S
WS ZENbirotk.
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Simultaneous testing of the mean vector and
the covariance matrix for high-dimensional data

RBFSLRZ fEH B
BERS RIS CIN

(X g1, X g2, ..., Xgn,) &5 g HERL, (9=1,2) KVEOLND p x ng OREFEELITHE
. 4 Xgi \CF L TUTOETVERET S ¢

X :E;/QZgi—i—ug fori=1,...,n.

FIL, BHERERNT PV 25 I3 E[Zg] =0, Var[Zg] = [, L U, Zusooos Zing, Zors o
Zop, ITHWVICMNSITHD ET 5. 22U, L, 1dp x p DBEAATHIE T 5.

2 FHEM OB OFEAEDORHD T2 012, VIR 7 bV ORISR E S /3 8L/ BA 75 0
FISEVERE 22 EDRIRE SN TV D, AL T, R MO FEEN & B3 #i 7510
RISEPE % B RIE T % F ik Ao . b s, LT OREME R & 4o 7

HO L = Mo, 21 = 22, H1 : not H(]. (1)

p < min{ni,no} 27 —FATFIMGR L, 70, B REENTIERNE 2 E T 41X 2 OEERE
FIREIC R4 5 LR LL R E A AR5 2 L 3 AIRETH D . BARAIICIT,

A= szl |W|"a/? ne"/?
|(n1n2)/n(X1 — X2)(X1 — X2)' + 23:1 W |n/2 H§:1 ngng/z

ThHzb6h5. f:fib, n=mni+no fg?)@,

X, = - ZXgiv Wy = Z(Xgi — X) (X4 — X))
i=1 =1
& 512, Muirhead (1982) IZBWTEELERREE H 2 T\ 5.

—JC, p>min{ny,no} TH D & SERFETHN W, & Wy D7 &b —HITRFRITS
IR DTI-OREHILELRER T 5 Z LN TERV. £72, p <min{ny,n2} TH->TH png,ng
DRFRFEIZR Z WIS, Muirhead (1982) TH % B AIEIELE LARE OIS E 3B LT 5
ZEMRREIND. RWFETIE, NV AICESSRERFIEEZEZHZ T, p <min{ni,na}
RIERMEDOREZR ST & MR TH Y, RN KE WA THITEREEE L L 220
(1) DI=DOIEEBELEE 520 2 ENTE. (1) IFLUTOLIICEHEHMADL LN TED

Hy : ||6]> =0, [| Al =0, Hy :not Ho,

T, d=p —py THH, A=3—-S THD. 22, || [|[IF=2—2 Vv R/ VATH
D, - lpiE7e=2 ) Vv ATHS. |6 & ||AH% DRRHEEEIZZNENKRD L H I
HEzbhb:

o trS tr.S
(X1 - Xo) (X1~ X2) — —+ — —22,
ny n9

1612

2
A2 = ) X2 — 2tr(515).
g=1



7277 L,

- ng—1
try2 = g ng — 1)(ng — 2)trS? + (trS,)% — ny K, },
g ng(ng_z)(ng_3){( g )( g ) g ( g) g g}
g
1 1 — —
S, :72_J%Jg:n_1§{@¢—XJQ@—XQﬁ
g g

=1

N HEE B t?i\]g I%, Himeno and Yamada (2014) X° Srivastava, Yanagihara and Kubokawa
(2014) e ETRESNLTWVD. ZHUOLDORREHEEEDOFBIILL T O X 5 ITHD HiL5:

(i) EERMEEZRET D2 LR (Zy OFE—A L MIEAT DICEITLE), NMEHEZ .
(ii) p > min{ni,ne} THLTHLERTE D,
(iil) WE R BED S & T, p, ny, ng ZMRRE L7 & ZHREERMEEFF.

FIRICDRR EZ BT, Chen and Qin (2010) 1T ANRHEE & |m2 OWHEERMEEZ L, 2D
FERZE AW MV ORSEMERE (Hy : 6 = 0) #5272, & 512, Li and Chen (2012)
R B [A]2 OWE ESIME 27 LIS BATEI O RESHERE (Ho : A = 0) 25 27-.
KWFFETIE, [8]2/01 & [A|%/0r ORISR OWER AT 2T~ 2 LT, (1) DFHO
BEOBRRERB. 7277, 0 ZEHTROSEOEERETH Y, SMERE OB S b
B 5. -

ARG T, LA BED S & T [8]2/01 & || A2 o0 DRIBSM OWRL 25 2 WITIE
B & 725 2 L AW L. ZOWRIIZR KR IS & | WTIREE 5 22 OWRTH 725
| FEOBRORMERS L ORI 237, & 51T, BT, AREAIC BT 2 IRETF LD
FrE LT hLaY I al— g ko TEl L7-.
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